7191

Table of Contents

CORRBA 1.0

RAFT

Overview 13

1.1 Overview 13
1.2 Unresolved Issues 15

The Object Model 17

2.1 Overview 17

2.2 Object Semantics 18

2.2.1 Objects 19

2.2.2 Requests 19 .
2.2.3 Object Creation and Destruction 20
224 Types 20

2.2.5 Interfaces 22

2.2.6 Operations 22

2.2.7 Attributes 24

2.3 Object Implementation 24

2.3.1 The Execution Model: Performing Services 24
2.3.2 The Constriction Model 25

The Common Object Request Broker Architecture 27

3.1 The Structure of an Object Request Broker 28

3.1.1 Object Request Broker 32
3.1.2 Clients 33
3.1.3 Object implementations 33

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Contents

3.2

33
34
3.5
3.6

3.7

3.1.4 Object References 34

3.1.5 IDL Interface Definition Language 34
3.1.6 Programming Language Mapping 34
3.1.7 Client Stubs 35

3.1.8 Dynamic invocation Interface 35
3.1.9 Implementation Skeleton 35

3.1.10 Object Adapters 35

3.1.11 ORB Interface 36

3.1.12 Interface Repository 36

3.1.18 Implementation Repository 36

Some example ORBs 37

3.2.1 Client- and Implementation-resident ORB 37
3.2.2 Server-based ORB 37
3.2.3 System-based ORB 37
3.2.4 Library-based ORB 37

The Structure of a Client 37
The Structure of an Object Implementation 39
The Structure of an Object Adapter 41

Some example Object Adapters 43

3.6.1 Basic Object Adapter 43
3.6.2 Library Object Adapter 43
3.6.3 Object-Oriented Database Adapter 43

The Integration of Foreign Object Systems 43

IDL Syntax and Semantics 45

4.1

4.2

4.3

44

45

4.6

4.7
438

Lexical Conventions 46

4.1.1 Tokens 46
4.1.2 Comments 47
4.1.3 ldentifiers 47
4.1.4 Keywords 47
4.1.5 Literals 48

Preprocessing 49
IDL Grammar 50

Interface Declaration 54
4.4.1 Interface Header 54

4.4.2 Inheritance Specification 55
4.4.3 |Interface Body 55

4.4.4 Forward Declaration 56
Constant Declaration 56
4.5.1 Syntax 56

4.5.2 Semantics 57

Type Declaration 58

4.6.1 Basic Types 59

4.6.2 Constructed Types 60
46.3 Template Types 62
4.6.4 Complex Declarator 64

Exception Declaration 64
Attribute Declaration 64

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Contents

5

4.9 Operation Declaration 65

4.9.1 Operation Attribute 66
4.9.2 Parameter Declarations 66
4.9.3 Throw Expressions 67
4.9.4 Context Expressions 67

4.10 Names and Scoping 68
4.10.1 Handling Ambiguity in Types, Constants, Enumeration Values, and Exceptions 69
4.11 Differences from C++ 69

4.12 Standard Exceptions 70

C Language Stub Mapping 73

5.1 Scoped Names 73
5.2 Mapping for Interfaces 74
5.3 Inheritance and Operation Names 75
5.4 Mapping for Constants 76
5.5 Mapping for Basic Data Types 76
5.6 Mapping for Structure Types 76
5.7 Mapping for Union Types 77
5.8 Mapping for Sequence Types 77
5.9 Mapping for Strings 79
5.10 Mapping for Arrays 80
5.11 Mapping for Exception Types 81
5.12 Implicit Arguments to Operations 81
5.13 Interpretation of Functions with Empty Argument Lists 81
5.14 Argument Passing Considerations 82
5.15 Return Result Passing Considerations 82
5.16 Dynamic Storage Management 83
5.17 Handling Exceptions in Client CDL. 84
5.18 Method Routine Signatures 86 "
5.19 Include Files 86

Dynamic Invocation Interface 87

6.1 Overview 87

6.2 Request Routines 89
6.2.1 ORB_CreateRequest 89
6.2.2 ORB_AddArgToRequest 90
6.2.3 ORB_InvokeRequest 91
6.2.4 ORB_DeleteRequest 91

6.3 Deferred Synchronous Routines 91

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Contents

6.4

6.5

6.6

6.3.1 ORB_SendRequest 91
6.3.2 ORB_GetResponse 92

List Routines 92

6.4.1 ORB_CreateltemList 92
6.4.2 ORB_AdditemToList 93
6.4.3 ORB_FreeList 93

6.4.4 ORB_AllocateListMemory 93
6.4.5 ORB_FreelistMemory 93
6.4.6 ORB_GetListCount 94

Context Objects 94
6.5.1 Logical structure of the Context Object 95
Context Object Routines 95

6.6.1 ORB_GetDefaultCtx 96
6.6.2 ORB_SetCtxValues 96
6.6.3 ORB_GetCtxValues 96
6.6.4 ORB_DeleteCtxValues 97
6.6.5 ORB_CreateCtx 97
6.6.6 ORB_DeleteCtx 97
6.6.7 ORB_OpenCtx 98

The Interface Repository 99

74
7.2
7.3
74

75

76

Philosophy 99
Scope of an Interface Repository 100
Implementation Dependencies 101

Basics of the Interface Repository Interface 102

7.4.1 Types of Interface Objects 102

7.4.2 Instances of Interface Objects 102
7.4.3 Attributes of Interface Objects 103
7.4.4 Operations on Interface Objects 103

Interface Repository Interface 103

7.5.1 Definitions 103

7.5.2 Interface Definition for Type Intf_Root 105
7.5.3 Interface Definition for Type Container 106
7.5.4 Interface Definition for Type Exception 111
7.5.5 |Interface Definition for Type Attribute 111
7.5.6 Interface Definition for Operation 112

7.5.7 Interface Definition for Parameter 113
7.5.8 Interface Definition for Interface_Def 114
7.5.9 Interface Definition for Interface_Bin 115

Typecodes 115

ORB Interface 119

8.1
8.2

Converting Object References to Strings 119

Object Reference Operations 120

8.2.1 Determining the Object Implementation and Interface 120
8.2.2 Duplicating and Releasing Copies of Object References 120
8.2.3 Equality of Two Object References 121

vi

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Contents

The Basic Object Adapter 123

Role of the Basic Object Adapter 123

Basic Object Adapter Interface 125

9.2.1 Registration of Implementations 127

9.2.2 Activation and Deactivation of Implementations 127
9.2.3 Generation and Interpretation of Object References 130
9.2.4 Authentication and Access Control 131

9.2.5 Persistent Storage 132

C Language Mapping for Object Implementations 132

9.3.1 Operation-specific details 132
9.3.2 Method signatures 132

9.3.3 Binding methods to skeletons 133
9.3.4 BOA and ORB routines 133

Interoperability 135

9
9.1
9.2
9.3
10
10.1
11

The Organization of Multiple ORBs 136

10.1.1 Reference Embedding 137
10.1.2 Protocol Translation 137
10.1.3 Alternate ORBs 137

Glossary 139

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

vii

Contents

viii

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

List of Figures

FIG. 1 Legal Values 21

FIG. 2 A Request Being Sent Through the Object Request Broker 28
FIG. 3 The Structure of Object Request Broker Interfaces 29

FIG. 4 A Client using the Stub or Dynamic Invocation Interface 30
FIG. 5 An Object Implementation Receiving a Request 31

FIG. 6 Interface and Implementation Repositories 32

FIG. 7 The Structure of a Typical Client 38

FIG. 8 The Structure of a Typical Object Implementation 40

FIG. 9 The Structure of a Typical Object Adapter 42

FIG. 10 Different Ways to Integrate Foreign Object Systems 44

FIG. 11 The Structure and Operation of the Basic Object Adapter 125
FIG. 12 Implementation Activation Policies 129

FIG. 13 Multiple ORBs 136

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Figures

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

1 Overview

1.1 Overview

As defined by the Object Management Group (OMG), the Object Request Broker (ORB)
provides the mechanisms by which objects transparently make requests and receive
responses. The ORB provides interoperability between applications on different machines
in heteroigeneous distributed environments and seemlessly interconnects multiple object
systems.

The Common Object Request Broker Architecture and Specification described in this doc-
ument is a self-contained response to the Request For Proposals (RFP) issued by the ORB
Task Force of the OMG, submitted jointly by the following companies:

» Digital Equipment Corporation

» Hewlett-Packard Company

« Hyperdesk Corporation

¢ NCR Corporation

1. From Object Management Architecture Guide, Revision 1.0, OMG TC Document 90.9.1.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 13

Overview

« Object Design, Inc.
* SunSoft, Inc.

It completely replaces the separate proposals previously submitted. At the request of the
ORB Task Force, representatives of the above companies worked to find a way to support
a common submission that could have rapid commercial availability using technologies
each company had already developed. The result is the Common ORB Architecture and
Specification, which defines a framework for different ORB implementations to provide
common ORB services and interfaces to support portable clients and implementations of
objects.

This document is organized as follows:

Chapter 1: Overview
Overview of the document and status.

Chapter 2: The Object Model
The concrete object model for the Common ORB Architecture.

Chapter 3: The Common Object Request Broker Architecture
The overall ORB architecture and interface description.

Chapter 4: IDL Syntax and Semantics
The specification of the Interface Definition Language.

Chapter 5: C Language Stub Mapping
The mapping provided for the C programming language.

Chapter 6: Dynamic Invocation Interface
The dynamic request invocation interface.

Chapter 7: The Interface Repository
The interface (i.e., type) definition repository.

Chapter 8: ORB Interface
The direct interface to the ORB.

Chapter 9: The Basic Object Adapter
' The Basic Object Adapter interface.

Chapter 10: Interoperability
A discussion of interoperability between ORBs.

Chapter 11: Glossary Glossary.

14

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION -

Unresolved Issues

1.2 Unresolved Issues

Sk

This document contains material which has not been agreed to by all of the parties
involved. Such issues are considered not significant enough to prevent reaching the overall
agreement, and are unlikely to cause major difficulty in accomplishing the goals of OMG
and the ORB. Despite these issues, the submitters of this document are satisfied with this
submission and endorse it.

In some cases possible solutions to the issues have been proposed, however resolution of
the issue is pending futher study by each of the submitters.

The submitters recognize that not all of the document is consistent and that some errors
and omissions remain. The submitters expect to correct these problems and expand on the
text where needed for explanatory purposes.

Paragraphs containing unresolved issues are highlighted in the text in the following way:
This material has not been resolved.
The unresolved issues are listed below along with their page number.

Page 55: It is an unresolved issue as to whether to allow IDL interface inheritance from’
multiple interfaces which define the same operation names, thereby causing a name con-
flict.

Page 62: It is unresolved as to how to map IDL union data structures to languages other
than C.

Page 64: It is unresolved whether it is possible to return arbitrary values along with an
exception using existing programming language exception mechanisms.

Page 68: Since IDL interface names have global scope, they must all be unique in any par-
ticular context. This may limit the use of interfaces by a client because of name clashes. It
is unresolved how to handle this name scoping problem.

Page 70: The list of IDL standard exceptions is provisional. In addition, a listing of “well-
known types” (such as objref_t) needs to be added to the end of this chapter.

Page 87: Datatypes are normally provided through the interface in native (eg. compiler
generated) format. It is an issue, in addition to passing structures in native form as to
whether it will be allowed for constructed datatypes to be provided as an exploded struc-
ture defined as a list of lists for the dynamic invocation interface. Note that however pro-
vided on the client side, the datatypes always appear in native format to the object V
implementation.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 15

Overview

Page 88: The IDL datatype set does not currently support the concept of “void *” (eg. any)
which is necessary for certain servers. The dynamic invocation interface currently does
define this concept. The use of this construct is not resolved (resolution depends in part on
the issue of datatype representation).

Page 89: The memory management definition used in the dynamic invocation mechanism
is not agreed to.

Page 90: It is unresolved as to whether the context override list will be allowed in a
dynamic invocation.

Page 92: Memory management support in the List routines of the dynamic request invoca-
tion is not resolved. The particular issue is whether the ORB will allocate storage for
return values and out parameters according to the list allocation mechanism described
here, or using the same policy as for stubs. Alternatively stated, It is still unresolved
whether an ORB mechanism, such as lists, is used to manage memory in both the dynamic
and static interfaces; or memory managment is always handled in a language specific
manner.

Page 94: It is unresolved whether the ORB directly supports persistent context objects, or
if the ORB is simply a client of context objects, which could have a variety of persistent or
non-persistent implementations.

Page 104: This definition of the interface repository depends on the “any” type (see the
issue about datatypes in the dynamic invocation interface).

Page 104: It is unresolved if all of the attributes (eg. Time_Created) specified for the three
types of “Container” objects are to be included in the interface.

Page 104: It is unresolved as to whether the “survey” interfaces should be included.

Page 115: The exact definition of typecodes has not yet been resolved. What is required is
that all the types representable in IDL be handled.

Page 133: The syntax for method signatures in an object implementation is provisional.

16

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

2

The Object Model

This chapter describes the concrete object model which underlies the Common ORB
Architecture. The model is derived from the abstract object model defined by the Object
Management Groupl.

2.1 Overview

The object model provides an organized presentation of object concepts and terminology.
It defines a partial model for computation that embodies the key characteristics of objects
as realized by the submitted technologies.

The OMG object model is abstract in that it is not directly realized by any particular tech-
nology. The model described here is a concrete object model. A concrete object model
may differ from the abstract object model in several ways:

1. Object Management Architecture Guide 1.0, Chapter 4, OMG TC Document 90.9.1, Object Manage-
ment Group, Inc., 492 Old Connecticut Path, Framingham, MA 01701, November 1990.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 17

The Object Model

+ it may elaborate the abstract object model by making it more specific, for example, by
defining the form of request parameters or the language used to specify types

* it may populate the model by introducing specific instances of entities defined by the
model, for example, specific objects, specific operations, or specific types

it may restrict the model by eliminating entities or placing additional restrictions on
their use

An object system is a collection of objects that isolates the requestors of services (clients)
from the providers of services by a well-defined encapsulating interface. In particular, cli-
ents are isolated from the implementations of services as data representations and execut-
able code.

The object model first describes concepts that are meaningful to clients, including such
concepts as object creation and identity, requests and operations, types and signatures. It
then describes concepts related to object implementations, including such concepts as
methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful to cli-
ents. The discussion of object implementation is more suggestive, with the intent of allow-
ing maximal freedom for different object technologies to provide different ways of
implementing objects. See Chapter 9 for more information on implementation rules for
objects which are managed by the Basic Object Adapter.

There are some other characteristics of object systems that are outside the scope of the
object model. Some of these concepts are aspects of application architecture, some are
; associated with specific domains to which object technology is applied. Such concepts are
more properly dealt with in an architectural reference model. Examples of excluded con-
cepts are compound objects, links, copying of objects, change management, and transac-
tions. Also outside the scope of the object model is the model of control and execution.

This object model is an example of a classical object model, where a client sends a mes-
sage to an object. Conceptually, the object interprets the message to decide what service to
perform. In the classical model, a message identifies an object and zero or more actual
parameters.As in most classical object models, a distinguished first parameter is required,
which identifies the operation to be performed; the interpretation of the message by the
object involves selecting a method based on the specified operation. Operationally, of
course, method selection could be performed either by the object or the ORB.

2.2 Object Semantics

An object system provides services to clients. A client of a service is any entity capable of
requesting the service.

18 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Object Semantics

2.2.1

2.2.2

This section defines the concepts associated with object semantics, i.e. the concepts rele-
vant to clients.

Objects

An object system includes entities known as objects. An object is an identifiable, encapsu-
lated entity that provides one or more services that can be requested by a client.

Requests

Clients request services by issuing requests. A request is an event, i.e. something that
occurs at a particular time. The information associated with a request consists of an opera-
tion, a target object, zero or more (actual) parameters, and an optional request context.

A request form is a description or pattern that can be evaluated or performed multiple
times to cause the issuing of requests. Request forms are defined by particular language
bindings. In the C language binding, a request form is a C function invocation naming a
function created by the IDL compiler from an IDL interface definition. An alternative
request form consists of calls to the dynamic invocation interface to create an invocation
structure, add arguments to the invocation structure, and to issue the invocation.!

A value is anything that may be a legitimate (actual) parameter in a request. A value may
identify an object, for the purpose of performing the request. A value that identifies an
object is called an object name. More particularly, a value is an instance of an IDL data-

type.

A handle is an object name that reliably identifies a particular object. Specifically, a han-
dle will identify the same object each time the handle is used in a request (subject to cer-
tain pragmatic limits of space and time). An object reference is a handle.

A request may have parameters that are used to pass data to the target object; it may also
have a request context which provides additional information about the request.

A request causes a service to be performed on behalf of the client. One outcome of per-
forming a service is that results are returned to the client.

If an abnormal condition occurs during the performance of a request, an exception is
returned. The exception may carry additional return parameters particular to that excep-
tion.

1. Descriptions of these request forms may be found in Chapter 5 for the C-language binding for IDL and
Chapter 6 for the dynamic invocation interface.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 19

The Object Model

The request parameters are identified by position. A parameter may be an input parameter,
an output parameter, or an input-output parameter. A request may also return a single
result value, as well as the output parameters.

The following semantics hold for all requests:

 any aliasing of parameter values is neither guaranteed removed nor guaranteed pre-
served

+ the order in which aliased output parameters are written is not guaranteed

+ any output parameters are undefined if an exception is returned

+ the values which may be returned in an input-output parameter may be constrained by
the value which was input

Descriptions of the permitted values in requests and the permitted exceptions may be
found in §2.2.4 on page 20, and §2.2.6.3 on page 23.

2.2.3 Object Creation and Destruction

Objects can be created. Clients create objects by issuing requests. The result of object cre-
ation is revealed to the client in the form of an object reference that identifies the new
object.

Objects may also be destroyed.

2.2.4 Types

A type is an identifiable entity with an associated predicate (a single-argument mathemati-
cal function with a boolean result) defined over values. A value satisfies a type if the pred-
icate is true for that value. A value that satisfies a type is called a member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a possible
result.

A type may have different predicates at different times. The extension of a type is the set
of values that satisfy the type at any particular time.

An object type is a type whose members are objects (literally, values that identify objects).
In other words, an object type is satisfied only by (values that identify) objects.

Data types in this model are constrained as follows:

Basic types:

+ 16-bit and 32-bit signed and unsigned 2’s complement integers

20

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Object Semantics

32-bit and 64-bit IEEE floating point numbers
an enumerated set of characters
a boolean type taking the values TRUE and FALSE

an 8-bit opaque datatype, guaranteed to not undergo any conversion during transfer
between systems

an enumerated type which defines ordered sequences of identifiers

a string type which consists of a variable-length array of characters; the length of the
string is available at runtime

Constructed types:

.

a record type, consisting of an ordered set of (name,value) pairs

a discriminated union type, consisting of a discriminator followed by an instance of a
type appropriate to the discriminator value

a sequence type which consists of a variable-length array of a single type; the length of
the sequence is available at runtime

an array type which consists of a fixed-length array of a single type

an interface type, which specifies the set of operations which an instance of that type
must support

Values in a request are constrained to values which satisfy these type constraints. The legal
values are shown in FIG. 1 on page 21.

FIG. 1

Legal Values

Value

Object Reference Composite Value

%\

Elementary Value Struct Sequence Union Array

Short Long UShort Ulong Float Double Char String Boolean Octet Enum

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 21

The Object Model

2.2.5 Interfaces

An interface is a description of a set of possible operations that a client may request of an
object. An object satisfies an interface if it can be specified as the target object in each
potential request described by the interface.

An interface type is a type that is satisfied by any object (literally, any value that identifies
an object) that satisfies a particular interface.

Interfaces are specified in IDL. Interface inheritance provides the composition mechanism
for permitting an object to support multiple interfaces. The principal interface is simply
the most-specific interface that the object supports, and consists of all operations in the
transitive closure of the interface inheritance graph.

2.2.6 Operations

An operation is an identifiable entity that denotes a service that can be requested.

An operation is identified by an operation identifier. An operation is not a value.

An operation has a signature that describes the legitimate values of request parameters and

returned results. In particular, a signature consists of:

+ aspecification of the parameters required in requests for that operation

+ aspecification of the return result of the operation

« a specification of the exceptions that may be raised by a request for the operation and
the types of the parameters accompanying them

+ aspecification of additional contextual information that may affect the request

+ anindication of the execution semantics the client should expect from a request for the
operation

Operations are (potentially) generic, meaning that a single operation can be uniformly
requested on objects with different implementations, resulting in observably different
behavior. Genericity is achieved in this model via interface inheritance in IDL and the
total decoupling of implementation from interface specification.

An operation may be identified in a request form by an operation name. The operation
names are determined by language bindings.

The general form for an operation signature is:

[oneway] <op_type_specs> <identifiers (paramt, ..., paramL)
[throw(exceptl,....exceptN)] [context(name1, ..., hameM)]

22

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Object Semantics

2.2.6.1

2.2.6.2

2.2.6.3

where:

« the optional oneway keyword indicates that best-effort semantics are expected of
requests for this operation; the default semantics are exactly-once if the operation suc-
cessfully returns results or at-most-once if an exception is returned

+ the <op_type_spec> is the type of the return result

« the <identifier> simply provides a name for the operation in the interface; the actual
operation name that a programmer must refer to in a request form is dependent upon
the language mapping in use

+ the operation parameters needed for the operation; they are flagged with the modifiers
in, out, or inout to indicate the direction in which the information flows (with respect to
the object performing the request)

+ the optional throw expression indicates which exceptions can be signalled to terminate
a request for this operation; if such an expression is not provided, no exceptions will
be signalled

+ the optional context expression indicates which request context information will be
available to the object implementation; no other contextual information is required to
be transported with the request

Parameters

A parameter is characterized by its mode and its type. The mode indicates whether the
value should be passed from client to server (in), from server to client (out), or both
(inout). The parameter’s type constrains the possible value which may be passed in the
direction[s] dictated by the mode.

Return Result
The return result is a distinguished out parameter.

Exceptions

An exception is an indication that an operation request was not performed successfully. An
exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As arecord,
it may consist of any of the types described in §2.2.4 on page 20.

2.2.6.4 Contexts

2.2.6.5

A request context provides additional, operation-specific information that may affect the
performance of a request.

Execution Semantics
Two styles of execution semantics are defined by the object model:

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 23

The Object Model

+ at-most-once: if an operation request returns successfully, it was performed exactly
once; if it returns an exception indication, it was performed at-most-once;

+ Dbest-effort: a best-effort operation is a request-only operation, i.e. it cannot return any

results and the requester never synchronizes with the completion, if any, of the request.

The execution semantics to be expected is associated with an operation. This prevents a
client and object implementation from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or
deferred-synchronous manner.

2.2.7 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair of
accessor functions: one to retrieve the value of the attribute and one to set the value of the
attribute. ~

An attribute may be immutable, in which case only the retrieval accessor function is
defined.

2.3 Object Implementation

2.3.1

This section defines the concepts associated with object implementation, i.e. the concepts
relevant to realizing the behavior of objects in a computational system.

The implementation of an object system carries out the computational activities needed to
effect the behavior of requested services. These activities may include computing the
result of the request and updating the system state. In the process, additional requests may
be issued.

The implementation model consists of two parts: the execution model and the construction
model. The execution model describes how services are performed. The construction
model describes how services are defined.

The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that oper-
ates upon some data. The data represents a component of the state of the computational
system. The code performs the requested service, which may change the state of the sys-
tem. '

24

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Object Implementation

Code that is executed to perform a service is called a method. A method is an immutable
description of a computation that can be interpreted by an execution engine. A method has
an immutable attribute called a method format that defines the set of execution engines
that can interpret the method. An execution engine is an abstract machine (not a program)
that can interpret methods of certain formats, causing the described computations to be
performed. An execution engine defines a dynamic context for the execution of a method.
The execution of a method is called a method activation.

When a client issues a request, a method of the target object is called. The input parame-
ters passed by the requestor are passed to the method and the output parameters and return
values (or exception and its' parameters) are passed back to the requestor.

Performing a requested service causes a method to execute that may operate upon an
object’s persistent state. If the persistent form of the method or state is not accessible to the
execution engine, it may be necessary to first copy the method or state into an execution
context. This process is called activation; the reverse process is called deactivation.

2.3.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of
requests. These mechanisms include definitions of object state, definitions of methods, and
definitions of how the object infrastructure is to select the methods to execute and to select
the cells to be made accessible to the methods. Mechanisms must also be provided to
describe the concrete actions associated with object creation, such as association of the
new object with appropriate methods.

An object implementation—or implementation, for short—is a definition that provides the
information needed to create an object and to allow the object to participate in providing
an appropriate set of services. An implementation typically includes, among other things,
definitions of the methods that operate upon that the state of an object. It also typlcally
includes information about the intended type of the object.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 25

The Object Model

26

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

3 The Common Object Request
Broker Architecture

The Common Object Request Broker Architecture (CORBA) is structured to allow inte-
gration of a wide variety of object systems. The motivation for some of the features may
not be apparent at first, but as we discuss the range of implementations, policies, optimiza-
tions, and usages we expect, to encompass, the value of the flexibility should become
more clear.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 27

The Common Object Request Broker Architecture

FIG. 2 A Request Being Sent Through the Object Request Broker

Client

Object Implementation

pd

\——//Request

ORB

3.1 The Structure of an Object Request Broker

FIG. 2 on page 28 shows a request being sent by a client to an object implementation.The
Client is the entity that wishes to perform an operation on the object and the Object Imple-
mentation is the code and data that actually implements the object. The ORB is responsi-
ble for all of the mechanisms required to find the object implementation for the request, to
prepare the object implementation to receive the request, and to communicate the data
making up the request. The interface the client sees is completely independent of where
the object is located, what programming language it is implemented in, or any other aspect
which is not reflected in the object’s interface.

28 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

The Structure of an Object Request Broker

FIG. 3

The Structure of Object Request Broker Interfaces

Dynamic
Invoke

I

Object Implementation

O D
IDL ORB IDL Object
Stubs Interface Skeleton Adapter

LB |

SRR R

ORB Core

(I
77277722

Interface identical for all ORB implementations
Up-call interface

There may be multiple object adapters

There are stubs and a skeleton for each object type
Normal call interface

* ORB-dependent interface

FIG. 3 on page 29 shows the structure of an individual Object Request Broker (ORB). The
interfaces to the ORB are shown by striped boxes, and the arrows indicate whether the
ORB is called or performs an up-call across the interface.

To make a request, the Client can use the Dynamic Invoke interface (the same interface
independent of the interface of the target object) or an IDL stub (the specific stub depend-
ing on the interface of the target object). The Client can also directly interact with the
ORB for some functions.

The Object Implementation receives a request as an up-call through the IDL generated
skeleton. The Object Implementation may call the Object Adapter and the ORB while pro-
cessing a request or at other times.

A central premise of CORBA is that there are definitions of the interfaces to objects in an
interface definition language, herein called the Interface Definition Language (IDL). This

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 29

The Common Object Request Broker Architecture

language defines the types of objects according to the operations that may be performed
on them and the parameters to those operations.

FIG. 4 A Client using the Stub or Dynamic Invocation Interface

R

ORB Core
Request

(MMM Interface identical for all ORB implementations

RN There are stubs and a skeleton for each object type

SIS

ORB-dependent interface

The client performs a request by having access to an Object Reference for an object and

knowing the type of the object and the desired operation to be performed. The client ini-

tiates the request be calling stub routines that are specific to the object or by constructing
the call dynamically (see FIG. 4 on page 30).

The dynamic and stub interface for invoking a request satisfy the same request semantics,
and the receiver of the message cannot tell how the request was invoked.

30

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

The Structure of an Object Request Broker

FIG. 5 An Object Implementation Receiving a Request

P

5

Object Implementation

ORB Object
Interface Adapter
S N A AR L s 2 R

_Auest

ORB Core

(MMM Interface identical for ali ORB implementations

V777777772 There may be multiple object adapters

NN There are stubs and a skeleton for each object type
o “ ORB-dependent interface

The ORB locates the appropriate implementation code, transmits parameters and transfers
control to the Object Implementation through a object interface-specific skeleton (see FIG.
5 on page 31). In performing the request, the object implementation may obtain some ser-
vices from the ORB through the Object Adapter. When the request is complete, control
and output values are returned to the client.

The Object Implementation may choose which Object Adapter to use. This decision is
based on what kind of services the Object Implementation requires.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 31

The Common Object Request Broker Architecture

FIG. 6 Interface and Implementation Repositories
IDL Implementation
Definitions Installation
]

Interface

Implementation
Repository

Stubs Skeletons

Object Implementation

R

SRR

FIG. 6 on page 32 shows how interface and implementation information is made available
to clients and object implementations. The object interface is defined in IDL and that defi-
nition is used to generate the client side Stubs, the object implementation side Skeletons,
and is put into the Interface Repository to be used for dynamic invocation.

The Object Implementation information is provided at installation time and is stored in the
Implementation Repository for use during request delivery.

3.1.1 Object Request Broker
In the architecture, the ORB is not required to be implemented as a single component, but
rather it is defined by its interfaces. Any ORB implementation that provides the appropri-
ate interface is acceptable. The interface is organized into three categories:
1. those operations that are the same for all ORB implementations,
2. those operations that are specific to particular types of objects, and
3. those operations that are specific to particular styles of object implementations.

32

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

The Structure of an Object Request Broker

Different ORBs may make quite different implementation choices, and, together with the
IDL compiler and various Object Adapters, provide a set of services to clients and imple-
mentations of objects that have different properties and qualities.

There may be multiple ORB implementations (also described as multiple ORBs) which
have different representations for object references and different means of performing |
invocations. It may be possible for a client to simultaneously have access to two objects
implemented using different ORBs. The ORBs must keep track of which objects are
implemented in which ORB.

The ORB Core is that part of the ORB that provides the basic representation of objects and
communication of requests. CORBA is designed to support different object mechanisms,

and it does so by structuring the ORB with components above the ORB Core, which pro-
vide interfaces that can mask the differences between ORB Cores.

3.1.2 Clients

A client of an object has access to an object reference for the object, and invokes opera-
tions on the object. A client knows only the logical structure of the object according to its
interface and experiences the behavior of the object through invocations. Although we
will generally consider a client to be a program or process initiating requests on an object,
it is important to recognize that something is a client relative to a particular object. For
example, the implementation of one object may be a client of other objects

Clients generally see objects and ORB interfaces through the perspective of a language
mapping, bringing the ORB right up to the programmer’s level. Clients are maximally
portable and should be able to work without source changes on any ORB that supports the
desired language mapping with any object instance that implements the desired interface.
Clients have no knowledge of the implementation of the object, which object adapter is
used by the implementation, or which ORB is used to access it.

3.1.3 Object implementations

An object implementation provides the semantics of the object, usually by defining data
for the object instance and code for the object’s methods. Often the implementation will
use other objects or additional software to implement the behavior of the object. In some
cases, the primary function of the object is to have side-effects on other things that are not
objects.

A variety of object implementations can be supported, including separate servers, librar-
ies, a program per method, an encapsulated application, an object-oriented database, etc.
Through the use of additional object adapters, it is possible to support virtually any object
implementation. '

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 33

The Common Object Request Broker Architecture

Generally, object implementations do not depend on the ORB or how the client invokes
the object. Object implementations may select interfaces to ORB-dependent services by
the choice of Object Adapter. Object implementations are portable across any ORB that
supports the desired language mapping and implements the desired Object Adapter.

3.1.4 Object References

An Object Reference is the information needed to specify an object within an ORB. Both
clients and object implementations have an opaque notion of object references according
to the language mapping, and thus are insulated from the actual representation of them.
Two ORB implementations may differ in their choice of Object References.

All ORBs must provide the same langunage mapping to an object reference (usually
referred to as an objref_t) for a particular programming language. This permits a program
in a particular language to access object references independent of the particular ORB. In
addition, the language mapping may provide additional ways to access object references
in a typed way for the convenience of the programmer.

3.1.5 |IDL Interface Definition Language

The IDL Interface Definition Language defines the types of objects by specifying their
interfaces. An interface consists of a set of named operations and the parameters to those
operations. Note that although IDL provides the conceptual framework for describing the
objects manipulated by the ORB, it is not necessary for there to be IDL source code avail-
able for the ORB to work. As long as the equivalent information is available in the form of
stub routines or a runtime type repository, a particular ORB may be able to function cor-
rectly.

IDL is the means by which a particular object implementation tells its potential clients
what operations are available and how they should be invoked. From the IDL definitions,
it is possible to map CORBA objects into particular programming languages or object sys-
tems.

3.1.6 Programming Language Mapping
Different object-oriented or non-object-oriented programming languages may prefer to
access CORBA objects in different ways. For object-oriented languages, it may be desir-
able to see CORBA objects as programming language objects. Even for non-object-ori-
ented languages, it is a good idea to hide the exact ORB representation of the object
reference, method names, etc. A particular language mapping to CORBA should be the
same for all ORB implementations. The language mapping includes definition of the lan-
guage-specific data types and procedure interfaces to access objects through the ORB. It
includes the structure of the client stub interface, the dynamic invocation interface, the
implementation skeleton, the object adapter, and the direct ORB interface.

34

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

The Structure of an Object Request Broker

The language mapping also defines the interaction between object invocations and the
threads of control in the client or implementation. The most common mappings provide
synchronous calls, in that the routine returns when the object operation completes. Addi-
tional mappings may be provided to allow a call to be initiated and control returned to the
program. In such cases, additional language-specific routines must be provided to syn-
chronize the program’s threads of control with the object invocation.

3.1.7 Client Stubs

For a particular language mapping, there will be an interface to the stubs for each object
type. Generally, the stubs will present access to the IDL-defined operations on an objectin
a way that is easy for programmers to predict once they are familiar with IDL and the lan-
guage mapping for the particular programming language. The stubs make calls on the rest
of the ORB using interfaces that are private to, and presumably optimized for, the particu-
lar ORB Core. If more than one ORB is available, there may be different stubs corre-
sponding to the different ORBs. In this case, it is necessary for the ORB and language
mapping to cooperate to associate the correct stubs with the particular object reference.

3.1.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object invocations,
that is, rather than calling a stub routine that is specific to a particular operation on a par-
ticular object, a client may specify the object to be invoked, the operation to be performed,
and the set of parameters for the operation through a sequence of calls. The client code
must supply information about the operation to be performed and the types of the parame-
ters being passed (perhaps obtaining it from a type repository or other runtime source).

3.1.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there
will be an interface to the methods that implement each type of object. The interface will
generally be an up-call interface, in that the object implementation writes routines that
conform to the interface and the ORB calls them through the skeleton.

3.1.10 Object Adapters

An object adapter is the primary way that an object implementation accesses services pro-
vided by the ORB. There are expected to be a few object adapters that will be widely
available, with interfaces that are appropriate for specific kinds of objects. Services pro-
vided by the ORB through an Object Adapter often include: invocation, activation and
deactivation of object implementations or object instances, creation of objects, generation
of object references, association of persistent storage and access control information with
objects, authentication of clients, object implementation registration.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 35

The Common Object Request Broker Architecture

3.1.11

The wide range of object granularities, lifetimes, policies, implementation styles, and
other properties make it difficult for the ORB Core to provide a single interface that is
convenient and efficient for all objects. Thus, through Object Adapters, it is possible for
the ORB to target particular groups of object implementations that have similar require-
ments with interfaces tailored to them.

ORB Interface

The ORB Interface is the interface that goes directly to the ORB which is the same for all
ORBs and does not depend on the object’s interface or object adapter. Because most of the
functionality of the ORB is provided through the object adapter, stubs, skeleton, or
dynamic invocation, there are only a few operations that are common across all objects.
These operations are useful to both clients and implementations of objects.

3.1.12 Interface Repository

The Interface Repository is a service that provides persistent objects that represent the
IDL information in a form available at runtime. The Interface Repository information may
be used by the ORB to perform requests. Moreover, using the information in the Interface
Repository, it is possible for a program to encounter an object whose interface was not
known when the program was compiled, yet, be able to determine what operations are
valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a common
place to store additional information associated with interfaces to CORBA objects. For
example, debugging information, libraries of stubs or skeletons, routines that can format
or browse particular kinds of objects, etc., might be associated with the Interface Reposi-
tory.

3.1.13 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate and
activate implementations of objects. Although most of the information in the Implementa-
tion Repository is specific to an ORB or operating environment, the Implementation
Repository is the conventional place for recording such information. Ordinarily, installa-
tion of classes and control of policies related to the activation and execution of object
implementations is done through operations on the Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is a
common place to store additional information associated with implementations of
CORBA objects. For example, debugging information, administrative control, resource
allocation, security, etc., might be associated with the Implementation Repository.

36

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Some example ORBs

3.2 Some example ORBs

3.2.1

There are a wide variety of ORB implementations possible within the Common ORB
Architecture. This section will illustrate some of the different options. Note that a particu-
lar ORB might support multiple options and protocols for communication.

Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be implemented in
routines resident in the clients and implementations. The stubs in the client either use a
location-transparent IPC mechanism or directly access a location service to establish com-
munication with the implementations. Code linked with the implementation is responsible
for setting up appropriate databases for use by clients.

3.2.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can communi-
cate with one or more servers whose job it is to route requests from clients to implementa-
tions. The ORB could be a normal program as far as the underlying operating system is
concerned, and normal IPC could be used to communicate with the ORB.

3.2.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided as a basic
service of the underlying operating system. Object references could be made unforgeable,
reducing the expense of authentication on each request. Because the operating system
could know the location and structure of clients and implementations, it would be possible
for a variety of optimizations to be implemented, for example, avoiding marshalling when
both are on the same machine.

3.2.4 Library-based ORB

3.3

For objects that are light-weight and whose implementations can be shared, the implemen-
tation might actually be in a library. In this case, the stubs could be the actual methods.
This assumes that it is possible for a client program to get access to the data for the objects
and that the implementation trusts the client not to damage the data.

The Structure of a Client

A client of an object has an object reference that refers to that object. An object reference
is a token that may be invoked or passed as a parameter to an invocation on a different
object. Invocation of an object involves specifying the object to be invoked, the operation
to be performed, and parameters to be given to the operation or returned from it.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 37

The Common Object Request Broker Architecture

The ORB manages the control transfer and data transfer to the object implementation and
back to the client. In the event that the ORB cannot complete the invocation, an error
response is provided. Ordinarily, a client calls a routine in its program that performs the
invocation and returns when the operation is complete.

Most clients access object-type-specific stubs as library routines in their program (see
FIG. 7 on page 38). The client program thus sees routines callable in the normal way in its
programming language. Most implementations will provide a language-specific data type
to use to refer to objects, often an opaque pointer. The client then passes that pointer to the
stub routines to initiate an invocation. The stubs have access to the actual object reference
and interact with the ORB to perform the invocation.

FIG. 7

The Structure of a Typical Client

(CLIENT PROGRAM N

Language-dependent object references

AR NN NNNNNNNNNNNNNNANY UNNRNNRNRRR NN

ORB object references

Library routines

TR]
Dynamic invocation Stubs for Stubs for
interface interface A interface B

\. J

An alternative set of library code may also be available to perform invocations on objects
when stubs are not available, for example when the object was not defined at compile

38

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

The Structure of an Object Implementation

time. In that case, the client program must provide additional information to name the type
of the object and the method being invoked, and performs a sequence of calls to specify
the parameters and initiate the invocation.

Clients most commonly obtain object references by receiving them as output parameters
from invocations on other objects they have, or as input parameters on invocations to
objects they implement. Object references can also be converted to data types that can be
stored in files or preserved or communicated by different means and subsequently turned
back into object references.

3.4 The Structure of an Object Implementation

A Object Implementation provides the actual state and behavior of an object. The object
implementation can be structured in a variety of ways. Besides defining the methods for
the operations themselves, an implementation will usually define procedures for activating
and deactivating objects and will use other objects or non-object facilities to make the
object state persistent, to control access to the object, as well as to implement the methods.

The object implementation (see FIG. 8 on page 40) interacts with the ORB in a variety of
ways establish its identity, to create new objects, and to obtain ORB-dependent services. It
primarily does this via access to an Object Adapter, which provides an interface to ORB
services that is convenient for particular kinds of objects.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 39

The Common Object Request Broker Architecture

FIG. 8

The Structure of a Typical Object Implementation

(OBJECT IMPLEMENTATION \

Methods for Object data
interface A

N\ NNNNNINNNN]

Up-call to
method ORB object reference

Library routines

Lkeleton for Object Adapter
interface A routines

\. — —

Because of the range of possible object implementations, it is difficult to be definitive
about how in general an object implementation is structured. More details will be supplied
in the context of a particular object adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a call
is made to the appropriate method of the implementation. A parameter to that method
specifies the object being invoked, which the method can use to locate the data for the
object. Additional parameters are supplied according to the skeleton definition. When the
method is complete, it returns, causing output parameters to be transmitted back to the cli-
ent.

When a new object is created, the ORB must be notified so that the it knows where to find
the implementation for that object. Usually, the implementation also registers itself as

40

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

The Structure of an Object Adapter

implementing objects of a particular class, and specifies how to start up the implementa-
tion if it is not already running.

Most object implementations provide their behavior using facilities in addition to the ORB
and object adapter. For example, although the Basic Object Adapter provides some persis-
tent data associated with an object, that relatively small amount of data is typically used as
an identifier for the actual object data stored in a storage service of the object implementa-
tion’s choosing. With this structure, it is not only possible for different object implementa-
tions to use the same storage service, it is also possible for objects to choose the service
that is most appropriate for them.

3.5 The Structure of an Object Adapter

An object adapter (see FIG. 9 on page 42) is the primary means for an object implementa-
tion to access ORB services such as object reference generation. An object adapter exports
a public interface to the object implementation, and a private interface to the skeleton. It is
built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

+ generation and interpretation of object references

+ method invocation

+ security of interactions

+ object and implementation activation and deactivation

+ distinguishing of object references by the implementation
« registration of implementations

These functions are performed using the ORB Core and any additional components neces-
sary. Often, an object adapter will maintain its own state to accomplish its tasks.

As shown in FIG. 9 on page 42, the Object Adapter is implicitly involved in invocation of
the methods, although the direct interface is through the skeletons. For example, the
Object Adapter may be involved in activating the implementation or authenticating the
request.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 41

The Common Object Request Broker Architecture

FIG. 9

The Structure of a Typical Object Adapter

4)

Object Implementation
Interface A Interface B
Methods Methods
Interface A Interface B Object Adapter
Skeleton Skeleton Interface
ORB Core

The Object Adapter defines most of the services from the ORB that the Object Implemen-
tation can depend on. Different ORBs will provide different levels of service and different
operating environments may provide some properties implicitly and require others to be
added by the Object Adapter. For example, it is common for Object Implementations to
want to store certain values in the object reference for easy identification of the object on
an invocation. If the Object Adapter allows the implementation to specify such values
when a new object is created, it may be able to store them in the object reference for those
ORBs that permit it. If the ORB Core does not provide this feature, the Object Adapter
would record the value in its own storage and provide it to the implementation on an invo-
cation. With Object Adapters, it is possible for an Object Implementation to have access to
a service whether or not it is implemented in the ORB Core—if the ORB Core provides it,
the adapter simply provides an interface to it; if not, the adapter must implement it on top
of the ORB Core. A particular adapter must provide the same interface and service for all
the ORBs it is implemented on.

It is also not necessary for all Object Adapters to provide the same interface or functional-
ity. Some Object Implementations have special requirements, for example, an object-ori-
ented database system may wish to implicitly register its many thousands of objects
without doing individual calls to the Object Adapter. In such a case, it would be impracti-
cal and unnecessary for the object adapter to maintain any per-object state. By using an

42

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Some example Object Adapters

. object adapter interface that is tuned towards such object implementations, it is possible to
take advantage of particular ORB Core details to provide the most effective access to the
ORB.

3.6 Some example Object Adapters

There are a variety of possible object adapters. However, since the object adapter interface
is something that object implementations depend on, it is desirable that there be as few as
practical. Most object adapters are designed to cover a range of object implementations, so
only when an implementation requires radically different services or interfaces should a
new object adapter be considered. In this section, we describe three object adapters that
might be useful.

3.6.1 Basic Object Adapter

This proposal defines an object adapter that can be used for most ORB objects with con-
ventional implementations (See Chapter 9). For this object adapter, implementations are
generally separate programs. It allows there to be a program started per method, a separate
program for each object, or a shared program for all instances of the class. It provides a
small amount of persistent storage for each object, which can be used as a name or identi-
fier for other storage, for access control lists, or other object properties. If the implementa-
tion is not active when an invocation is performed, it will start one.

3.6.2 Library Object Adapter

This object adapter is primarily used for objects that have library implementations. It
accesses persistent storage in files, and does not support activation or authentication, since
the objects are assumed to be in the clients program.

3.6.3 Object-Oriented Database Adapter

This adapter uses a connection to an object-oriented database to provide access to the
objects stored in it. Since the OODB provides the methods and persistent storage, objects
may be registered implicitly and no state is required in the object adapter.

3.7 The Integration of Foreign Object Systems

The Common ORB Architecture is designed to allow interoperation with a wide range of
object systems (see FIG. 10 on page 44). Because there are many existing object systems,
a common desire will be to allow the objects in those systems to be accessible via the
ORB. For those object systems that are ORBs themselves, they may be connected to other
ORBs through the mechanisms described in chapter 10 on page 135.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 43

The Common Object Request Broker Architecture

FIG. 10

Different Ways to Integrate Foreign Object Systems

Object system as
a normal object

Object system as
an implementation

implementation with a special-purpose

object adapter

Basic Object Adapter| § Special-purpose Adapter

Object system as
another ORB
interoperating via a
gateway

ORB Core

Gateway

For object systems that simply want to map their objects into ORB objects and receive
invocations through the ORB, another solution is to have those object systems appear to
be implementations of the corresponding ORB objects. The object system would register
its objects with the ORB and handle incoming requests, and could act like a client and per-

form outgoing requests.

In some cases, it will be impractical for another object system to act like a normal object
implementation. A typical object adapter will be designed for objects that are created in
conjunction with the ORB and that are primarily invoked through the ORB. Another
object system may wish to create objects without consulting the ORB, and might expect
most invocations to occur within itself rather than through the ORB. In such a case, a more
appropriate object adapter might allow objects to be implicitly registered when they are
passed through the ORB.

44

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

4

IDL Syntax and Semantics

IDL (the Interface Definition Language) is the language used to describe the interfaces
that client objects call and server objects provide. An interface definition written in IDL
completely defines the interface and fully specifies each remote operation’s parameters.
An IDL remote interface provides the information needed to develop clients that use the
interface’s operations.

IDL obeys the same lexical rules as C++, although new keywords are introduced to sup-
port distribution concepts. It also provides full support for standard C++ preprocessing
features. The full description of IDL’s lexical conventions is presented in §4.1 on page 46.
A description of IDL preprocessing is presented in §4.2 on page 49. The scope rules for
identifiers in an IDL specification are described in §4.10 on page 68.

IDL grammar is a subset of ANSI C++ with additional constructs to support the remote
operation invocation mechanism. IDL is a declarative language; it supports C++ syntax
for constant, type, and operation declarations; it does not include any algorithmic struc-
tures or variables. The full grammar is presented in §4.3 on page 50.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 45

IDL Syntax and Semantics

IDL-specific pragmas may appear anywhere in a specification; the textual location of
these pragmas may be semantically constrained.

This chapter describes IDL semantics and gives the syntax for IDL grammatical con-
structs. The description of IDL grammar uses a syntax notation that is similar to Extended
Backus-Naur format (EBNF); TBL. 1 on page 46 lists the symbols used in this format and
their meaning.

TBL. 1

IDL EBNF Format

4.1

Symbol Meaning

= Is defined to be

I Alternatively

<text> Non-terminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

i The enclosed syntactic units are grouped as a single syntactic unit
i The enclosed syntactic unit is optional—may occur zero or one time

Lexical Conventions

4.1.1

This section! presents the lexical conventions of IDL. It defines tokens in an IDL specifi-
cation and describes comments, identifiers, keywords, and literals—integer, character, and
floating point constants and string literals.

An IDL specification consists of one or more files. A file is conceptually translated in sev-
eral phases.

The first phase is preprocessing, which performs file inclusion and macro substitution.
Preprocessing is controlled by directives introduced by lines having # as the first character
other than white space. The result of preprocessing is a sequence of tokens. Such a
sequence of tokens, that is, a file after preprocessing, is called a translation unit.

Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other separa-
tors. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments (collective,

1. This section is an adaptation of The Annotated C++ Reference Manual, Chapter 2; it differs in the list
of legal keywords and punctuation.

46

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Lexical Conventions

! 4.1.2

4.1.3

4.1.4

“white space”), as described below, are ignored except as they serve to separate tokens.
Some white space is required to separate otherwise adjacent identifiers, keywords, and
constants.

If the input stream has been parsed into tokens up to a given character, the next token is
taken to be the longest string of characters that could possibly constitute a token.

Comments

The characters /* start a comment, which terminates with the characters */. These com-
ments do not nest. The characters // start a comment, which terminates at the end of the
line on which they occur. The comment characters /, , and */ have no special meaning
within a // comment and are treated just like other characters. Similarly, the comment char-
acters / and /* have no special meaning within a /* comment.

Identifiers

An identifier is an arbitrarily long sequence of letters and digits. The first character must
be a letter; the underscore _ counts as a letter. Upper- and lower-case letters are treated as
the same. All characters are significant.

Keywords

The following identifiers are reserved for use as keywords, and may not be used other-
wise:

attribute double long string void

boolean enum octet struct FALSE

case exception oneway switch Object

char float out throw TRUE

const in readonly typedef UNBOUNDED
context inout sequence union

default interface shont unsigned

Identifiers startihg with an underscore () should probably be avoided to avert clashes with
certain language bindings.

The ASCII representation of IDL specifications uses the following characters as punctua-
tion: ~
s = e -) <>] N

In addition, the following tokens are used by the preprocessor:

o# |] &&

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 47

IDL Syntax and Semantics

4.1.5

4.1.5.1

4.1.5.2

Literals

Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless
it begins with 0 (digit zero). A sequence of digits starting with 0 is taken to be an octal
integer (base eight). The digits 8 and 9 are not octal digits. A sequence of digits preceded
by Ox or 0X is taken to be a hexadecimal integer (base sixteen). The hexadecimal digits
include a or A through f or F with decimal values ten through fifteen, respectively. For
example, the number twelve can be written 12, 014, or 0XC.

The type of an integer literal depends on its form, value, and suffix. If it is decimal, octal,
or hexadecimal and has no suffix, it has the first of these types in which its value can be
represented: long int, unsigned long int. If it is suffixed by u or U, its type is unsigned long
int. If it is suffixed by 1 or L, its type is the first of these types in which its value can be rep-
resented: long int, unsigned long int. If it is suffixed by ul, lu, uL, Lu, Ul, 1U, UL, or LU,
its type is unsigned long int.

Character Literals

A character literal is one or more characters enclosed in single quotes, as in 'x'. Character
literals have type char. The value of a character literal is the numerical value of the charac-
ter in the machine’s character set.

Certain nongraphic characters, the single quote ', the double quote ", the question mark ?,
and the backslash \, may be represented according to the escape sequences shown in TBL.
2 on page 48.

TBL. 2

Escape Sequences

Description Abbrev. Escape
new-line NL(LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \
question mark ? \?
single quote ' \'
double quote " \"
octal number 000 \ooo
hexadecimal number hh \xhh

48

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Preprocessing

4.1.53

4.1.5.4

4.2

If the character following a backslash is not one of those specified, the behavior is unde-
fined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits that
are taken to specify the value of the desired character. The escape \xhh consists of the back-
slash followed by x followed by one or two hexadecimal digits that are taken to specify
the value of the desired character. A sequence of octal or hexadecimal digits is terminated
by the first character that is not an octal digit or a hexadecimal digit, respectively. The
value of a character constant is implementation dependent if it exceeds that of the largest
char.

Floating Literals

A floating literal consists of an integer part, a decimal point, a fraction part, an e or E, an
optionally signed integer exponent, and an optional type suffix. The integer and fraction
parts both consist of a sequence of decimal (base ten) digits. Either the integer part or the
fraction part (but not both) may be missing; either the decimal point or the letter e (or E)
and the exponent (but not both) may be missing. The type of a floating literal is double
unless explicitly specified by a suffix. The suffixes f and F specify float, the suffixes 1 and
L specify double. :

String Literals

A string literal is a sequence of characters (as defined in §4.1.5.2 on page 48) surrounded
by double quotes, as in "...". A string has type “sequence of char” and is initialized with the
given characters.

Adjacent string literals are concatenated. Characters in concatenated strings are kept dis-
tinct. For example,

n \xAll l'Bll

contains the two characters "XA' and 'B' after concatenation (and not the single hexadecimal
character "XAB).

The size of a string literal is the number of character literals enclosed by the quotes, after
concatenation. The size of the literal is associated with the literal. Within a string, the dou-
ble quote character " must be preceded by a \.

A string literal may not contain the character \0'.

Preprocessing

IDL preprocessing, which is based on ANSI C++ preprocessing, provides macro substitu-
tion, conditional compilation, and source file inclusion. In addition, directives are pro-

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 49

IDL Syntax and Semantics

vided to control line numbering in diagnostics and for symbolic debugging, to generate a
diagnostic message with a given token sequence, and to perform implementation-depen-
dent actions (the #pragma directive). Certain predefined names are available. These facili-
ties are conceptually handled by a preprocessor, which may or may not actually be
implemented as a separate process.

Lines beginning with # (also called ‘“directives’”) communicate with this preprocessor.
White space may appear before the #. These lines have syntax independent of the rest of
IDL; they may appear anywhere and have effects that last (independent of the IDL scoping
rules) until the end of the translation unit. The textual location of IDL-specific pragmas
may be semantically constrained.

A preprocessing directive may be continued on the next line in a source file by placing a
backslash character, \, immediately before the new-line at the end of the line to be contin-
ued. The preprocessor effects the continuation by deleting the backslash and the new-line
before the input sequence is divided into tokens. A backslash character may not be the last
character in a source file.

A preprocessing token is an IDL token (§4.1.1 on page 46), a file name as in a #include
directive, or any single character, other than white space, that does not match another pre-
processing token.

The primary use of the preprocessing facilities is to include definitions from other IDL
specifications. A complete description of the preprocessing facilities may be found in The
Annotated C++ Reference Manual, Chapter 16.

4.3 IDL Grammar

(1) <specification> <definitions*

(2) <definitions u= <type_dcl> “”
: | <const_dcl> “;”
| <except dcl> “}”
| «interfaces> “;”

(3) «interfaces> u= «<interface_dcl>
| <forward_dcl>

(4) «<interface_dcl>
(5) <forward_dcl>
(6) <interface_header>

<interface_headers “{” <interface_body> “}”
“interface” <identifier>

“interface” <identifiers [<inheritance_specs]

(7) <interface_bodys> = <exporb”
(8) <export> iz <type_dcl> "
| <const_dcl> “;”

50

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

IDL Grammar

9) <inheritance_spec>
(10) <const_dcis
(11) <const_types

(12) <const_exp>
(13) <or_exprs

(14) <xor_expr>
(15) <and_exprs

(16) <shift_exprs

(17) <add_expr>

(18) <mult_expr>

(19) <unary_exprs
(20) <uhary_operators
(1) <primary_exprs

(22) «literals

<except_dcl> «;”
<attr_dcl> «”
<op_dcl> «”

“2” <identifiers { “” <identifiers ¥
“const” <const_types <identifiers “=” <const_exp>

<integer_types
<char_types
<boolean_types
<floating_pt_types
<string_types>
<scoped_name>

<or_exprs

<XOr_exprs
<0r_expr> “I” <xor_exprs

<and_exprs
<XOr_expr> “A” <and_exprs

<shift_expr>
<and_exprs “&” <shift_exprs

<add_exprs>
<shift_exprs “>5” <add_expr>
<shift_exprs “<<” <add_expr>

<muit_exprs
<add_exprs “4” <mult_exprs
<add_exprs “.” <mult_exprs

<unary_exprs
<mult_exprs “ <unary_exprs
<mult_exprs “” <unary_exprs
<muit_exprs “%” <unary_exprs

<unhary_operators <primary_exprs
<primary_exprs
[})

€ 3
~

<SCOped_names
<literal>
“” <constant_exprs “y”

<integer _literals
<string_literal>
<character_literals
<floating_pt _literals
<boolean_Jiterals

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

51

IDL Syntax and Semantics

= “TRUE”

52

(23) <boolean_Jiterals

(24) <scoped_names t=

(25) <positive_int_consts ::
(26) <type_dcls> ns

(27) <type_declarators i=
(28) <type_specs us

(29) <simple_type_spec> =

(30) <base_type specs

(81) <constr_type specs> =
l
i
(32) <template_type specs ::=
I
(33) «declaratorss ..o

(34) <declarators)

l

(35) <simple_declarators ::=

(36) <complex_declarators ::
(37) <floating _bt_types>

(38) <integer_types n=
(39) <signed_ints =

(40) <signed_long_int

(41) <signed_short jnt> =

“FALSE”

<identifiers
“11” <identifiers
<SCoped_name> “::” <identifiers

<const_exps>

“typedef” <type_declarators
<struct_types
<union_types
<ehum_types>

<type_spec> <declaratorss

<simple_type_specs
<constr_type specs
<base_type specs
<template_type_spec>
<scoped_names

<tloating_pt_types
<integer_type>
<char_types
<boolean_types>
<octet_types

<struct_type>
<union_type>
<enum_types>

<sequence_type>
<string_type>

<declarators { « <declarators }*

<simple_declarators
<complex_declarators

<identifiers
<array_declarators

“float”
“double”

<signed_int>
<unsigned_ints

<signed_long_int>
<signed_short_int>

“long ”
“short”

(42) <unsigned_ints

(43) <unsigned_long_int> ::

]
e

(44) <unsigned_short_int> ::

(45) <char_types
(46) <boolean_types
(47) <octet_types
(48) <struct_type>
(49) <member_list>
(50) <members

(51) <union_types

(52) <switch_type_spec>

(53) <switch_body>
(54) <cases>
(55) <case_labels

(56) <element_specs
(57) <enum_type>

(58) <enumerators

(59) <sequence_types
(60) <template_bounds

(61) <string_type>

(62) <array_declarators
(63) <fixed_array_sizes
(64) <attr_dcls

(65) <except_dcl>

(66) <op_dcl>

(67) <op_attributes
(68) <0p_type_specs>

:
|
|

1]

l

<unsigned_long_ints
<unsigned_short int>

“unsigned” “long”
“unsigned” “short”

“char”

“boolean”

“octet”

“struct” <identitiers “” <member_list> “p
<memberst

<type_spec> <declaratorss> “

“union” <idenﬁﬁer> “switchu “(”
“{,’ <switch_bodY> "},’

<integer_types
<char_types
<boolean_types
<ehum_types
<Scoped_hames

<switch_type spec> “”

<case>*
<case_label>* <element_specs “n

“case” <const_exp> “:”
“default” «.”

<type_spec> <declarators

[{8 }]

“enum” <identifier> “{” <enumerators {%” <enumerators j* «}
<identifiers
“sequence” “<” <simple_type_specs “r <template_bounds s

<positive_int_constants
“UNBOUNDED”

“<” <template_bounds “s”
<identifiers <fixed_array sizes*

“string”

“IT <positive_int_const> “P
[“readonly”] “attribute”
“exception” <identifiers “” <member _list “p

<simple_type_specs <declaratorss

[<op_attributes] <0p_type_spec> <identifiers
[<throw_exprs | [<context_exprs]

<parameter_dclss>

“oneway”

<simple_type_specs
“void”

IDL Grammar

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

53

IDL Syntax and Semantics

(69) <parameter_dcis> iz (" <param_dcls {%” <param_dcls Fy
l “(” “)”
(70) <param_dcl> “= <param_attributes <simple_type specs <declarators
+ (71) <param_attributes = “in”
, “outn
| “inout”

(72) <throw_expr>
(73) <context_exprs

“throw” “(» <Scoped_names { “” <Scoped_name> }* <)

“context” “(<string_literal> { « <string_literals }* “>

4.4 Interface Declaration

An IDL specification consists of one or more type definitions, constant definitions, excep-
tion definitions, or interface definitions, The syntax is:
<specifications = <definitions*

<definitions == <type_dcl> “;”
| <const dcis “n
| <except dcis e
| <interfaces e

See §4.5 on page 56, §4.6 on page 58, and §4.7 on page 64, respectively, for Specifications
of <const_dcls, <type_dcl>, and <except_dcls,

An interface definition satisfies the following syntax:

<interfaces = <interface_dcls

| <forward_dcl>
<interface_dcl> “= «<interface_headers “r <interface_body> “p’
<forward_dcl> = “interface” <identifiers
<interface_headers = “interface” <identifiers [<inheritance_spec>]
<interface_bodys n= <export®
<export> #= <type_dcls «»

| <const_dcls “r

| <except_dcis “r

| <atir dcls “r

| <op_dcl> “

4.4.1 Interface Header
The interface header consists of two elements:

* The interface name, The name must be preceded by the keyword interface, and con-
sists of an identifier that names the interface,

54 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

— .

Interface Declaration

Hoksk

* An optional inheritance specification. The inheritance specification is described in
§4.4.2 on page 55.

4.4.2 Inheritance Specification

An interface can be derived from another interface, which is then called a base interface of
the derived interface. An interface can be derived from one or more interfaces. The
derived interface inherits the constants, types, attributes, exceptions, and operations of its
base interfaces and, transitively, those of their base interfaces. In addition, the derived
interface can declare additional constants, types, attributes, exceptions, and operations.

The syntax for inheritance is as follows:
<inheritance_spec> “= "7 <identifiers { ” <identifiers ¥

Each <identifiers in an <inheritance_spec> must denote a previously defined interface and can
appear only once in the list.

All interfaces are implicitly derived from the Object interface; this interface has no opera-
tions—it exists solely to permit the use of generic interface references in IDL, specifica-
tions.

A derived interface may redefine any of the type, constant and exception names which
have been inherited; constraints on such redefinition, and the scope rules for such names,
are described in §4.10 on page 68.

It is not currently legal to inherit from two interfaces with the same operation name.

It is an unresolved issue as to whether to allow IDL interface inheritance from multiple
interfaces which define the same operation names, thereby causing a name conflict.

4.4.3 Interface Body

The interface body contains the following kinds of declarations:

* Constant declarations, which specify the constants that the interface exports; constant
declaration syntax is described in §4.5 on page 56.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 55

IDL Syntax and Semantics

¢ Type declarations, which specify the type definitions that the interface exports; type
declaration syntax is described in §4.6 on page 58.

Empty interfaces (i.e. those that contain no declarations) are permitted.

Some implementations may require interface-specific Pragmas to precede the interface
body.

4.4.4 Forward Declaration

Multiple forward declarations of the same interface name are legal.

4.5 Constant Declaration

This section describes the syntax for constant declarations,

4.5.1 Syntax
The syntax for a constant declaration is:
<const_dcl> = “const” <const_types <identifiers “=” <const_exps
<const_types w= <integer types
| <char_types
| <boolean_type>
| «floating _pt_types
| <string_types
| <Scoped_hames
<const_exps> i <Or_exprs

56 THE COMMON OBJEGT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Constant Declaration

4.5.2

<Or_exprs

<Xor_exprs

<and_expr>

<shift_exprs

<add_exprs

<mult_exprs

<unary_exprs

<unary_operators

<primary_expr>

<literal>

<boolean literal>

<scoped_hame>

<positive_int_consts

Semantics

The <scoped_names in the <const_t
<integer_type>, <char_type>, <boolea

<const_exp> must evaluate to the same
tributes over any sub-expressions in t

<XOr_exprs
<or_expr> “|” <xor_expr>

<and_exprs
<Xor_expr> “A” <and_expr>

<shift_exprs
<and_expr> “&” <shift_exprs

<add_exprs
<shift_exprs “s»” <add_expr>
<shift_exprs “<<” <add_expr>

<mult_exprs
<add_expr> “4” <mult_exprs
<add_exprs “.” <mult_exprs>

<unary_exprs
<mult_exprs “*» <unary_exprs
<mult_exprs <unary_exprs
<mult_exprs “%” <unary_exprs

<unary_operator> <primary_exprs
<primary_exprs
“+”

% 9
~

<scoped_names
<literal>
“(” <constant_exprs “y

<integer literal>
<string_literaly
<character_literals
<floating_pt_literals
<boolean_literal>

“TRUE”
“FALSE”

<identifiers
“11” <identifiers
<scoped_name> “::” <identifier>

<const_exps>

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

ype> production must be a previously defined name of an
n_type>, <floating _pt types, or <string_types.

type as specified in <const_type>. This constraint dis-
he <const_exp>; in particular, if a <scoped_names is

IDL Syntax and Semantics

used in an expression, it must have been defined in a preceding constant declaration with
the same type as specified in <const_types.

€ 9

The “~” unary operator can be applied only to integer types. It indicates that the bit-com-
plement of the expression to which jt is applied should be generated. For the purposes of
such expressions, the values are 2’ complement numbers. As such, the complement can
be generated as follows:

short - (value + 1)
unsigned short (216-1) - value
long - (value + 1)
unsigned long (232- 1) value

<posttive_int_const> must evaluate to a positive integer constant,

4.6 Type Declaration

IDL provides constructs for naming data types; that is, it provides C language-like decla-
rations that associate an identifier with a type. IDL uses the typedef keyword to associate

<type_dcl> u= “typedef” <type_declarator>
<sfruct_type>
|~ <union_types
| <enum_type>

<type_declarators iz <type_spec> <declaratorss

For type declarations, IDL defines a set of type specifiers to represent typed values. The
syntax is as follows:

<type_spec> w= <simple_type_specs>
<constr_type_spec>

<simple_type_specs> = <base_type_spec>
| <template_type specs>
| <scoped_names

<base_type_specs> u= <floating_pt types
| <integer_type>
| <char_type>
| <boolean_types
| <octet_types

<constr_type_spec> = <struct types
| <union_types
| <enhum_types

58

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

4.6.1

Type Declaration

<template_type_spec> = <sequence_types

| <string_type>
<declarators> = <declarators { «” <declarators }*
<declarators = <simple_declarators

| <complex_declarators
<simple_declarators tz <identifiers

<complex_declarators <array_declarators

The <scoped names in <simple_type_spec> must be a previously defined type.

As seen above, IDL type specifiers consist of simple scalar data types and type construc-
tors. IDL type specifiers can be used in operation declarations to assign data types to oper-
ation parameters. The next sections describe basic and constructed type specifiers.

Basic Types
The syntax for the Supported basic types is as follows:
<floating_pt types u= “float”
| “double”
<integer_types> i= <signed_int>
| <unsigned_ints
<signed_ints = <signed_long_int>
| <signed_short_ints
<signed_long_int> = “long”
<signed_short_ints = “Short”

<unsigned_ints <unsigned_long_ints

| <unsigned_short_int>
<unsigned_long_int>

“unsigned” “long”
<unsigned_short int>

“unsigned” “short”

<char_types> n= “char”
<boolean_types> “z= “boolean”
<octet_types iz “octet”

Each IDL data type is mapped to a native data type via the appropriate language mapping,
Conversion errors between IDL data types and the native types to which they are mapped
can occur during the performance of an operation invocation, It is the responsibility of the

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 59

IDL Syntax and Semantics

4.6.1.1 Integer Types
IDL supports long and short signed and unsigned integer data types. long represents the
range -2°' .. 251 - 1 while unsigned long represents the range 0 .. 22 - 1. short represents
the range -2% ., 215 - 1, while unsigned short represents the range 0 ., 216 1,

4.6.1.2 Floating-Point Types
IDL floating-point types are float and double. The float type represents IEEE single-pre-
cision floating point numbers; the double type represents IEEE double-precision floatin g
point numbers. The IEEE floating point standard specification (JEEE Standard Jor Binary

Floating-Point Arithmetic, ANSV/IEEE Std 754-1985) should be consulted for more infor-.

mation on the precision afforded by these types.

It is not required that there be native equivalences for the IEEE notions of not-a-number
and infinity; if attempts are made to transmit these quantities, the behavior is undefined.

NOTE Floating-point conversion errors fall into four categories: 1) the native mantissa has more
precision than the corresponding IEEE type - in this case the value should be rounded to
the precision available; reporting.such loss of precision is not strictly required, 2) the
native number is larger than the largest value of the IEEE type - in this case (floating
overflow) an exception condition should be reported to the programmer, 3) the native
number is smaller than the smallest value of the IEEE type - in this case (floating
underflow) the stub may Silently round the value to 0, and 4) the native representation does
not distinguish between -0 and +0 - in this case, the stub can silently convert -0 to (),

4.6.1.3 Char Type

IDL defines a char data type, consisting of the ISO Latin-1 printing characters and the
escape characters described in §4.1.5.2 on page 48. Characters are transmitted as 8-bit
quantities in their ASCII representation.

4.6.1.4 Boolean Type

The boolean data type is used to denote a data item that can only take one of the values
TRUE and FALSE.

4.6.1.5 Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion when
transmitted by the communication system.

4.6.2 Constructed Types

The constructed types are:

<constr_type_specs> u= <struct_types
| <union_types
| <enum_types

60

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Type Declaration

4.6.2.1

4.6.2.2

Structures

The structure syntax is:
<struct_types

<member _Jist> = <memberst

<members <type_spec> <declaratorss “”

ir

“struct” <identifiers “(” <member_fist> “}”

The <identifiers in <struct_type> defines a new legal type. Structure types may also be named
using a typedef declaration,

Name scoping rules require that the member declarators in a particular structure be
unique. The value of 3 struct is the value of all of jts members.

Discriminated Unions
The discriminated union syntax is:

<union_types “= “union” <identifiers “switch” «(<switch_type_specs “7
“{” <switch_bodys “

<integer _type>
<char_types
<boolean_type>
<eénum_types
<Scoped_names

<switch_bodys = <cases*
<case> <case_label>* <element_specs “r

“case” <const_exps “:”
, “default” “:”

<element_specs = <type_specs <declarators

<switch_type_spec>

<case_labels>

IDL unions are a Cross between the C union and switch statements. IDL unions must be
discriminated; that is, the union header must specify a typed tag field that determines

A default case can appear at most once. The <scoped_names in the <switch_type_specs pro-
duction must be a previously defined integer, char, boolean Or enum type.

Case labels must match or be automatically castable to the defined type of the discrimina-
tor. The complete set of matching rules are shown in TBL. 3 on page 62.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 61

T e —— S — _ e — ‘__\\K

IDL Syntax and Semantics

TBL. 3 Case Label Matching
Discriminator Type Matched By
long any integer value in the value range of long
short any integer value in the value range of short
unsigned long any integer value in the value range of unsigned long
unsigned short any integer value in the value range of unsigned short
char char
boolean TRUE or FALSE
enum any enumerator for the discriminator enum type
Name scoping rules require that the element declarators in a particular union be unique.
The value of a union is the value of its discriminator and one of its members.
Access to the discriminator and the related element is language-mapping dependent.
ok It is unresolved as to how to map IDL union data structures to languages other than C:
4.6.2.3 Enumerations
Enumerated types consist of ordered lists of identifiers. The syntax is:
<enum_types n= “enum” <identifiers “{” <enumerators {“,” <enumerators }*)
<enumerators = <identifiers

A maximum of 2* identifiers may be specified in an enumeration; as such, the enumerated
names must be mapped to a native data type capable of representing a maximally-sized
enumeration. The order in which the identifiers are named in the specification of an enu-
meration defines the relative order of the identifiers. Any language mapping which permits
two enumerators to be compared or defines successor/predecessor functions on enumera-
tors must conform to this ordering relation. The <identifier> following the enum keyword
defines a new legal type. Enumerated types may also be named using a typedef declara-
tion.

4.6.3 Template Types

The template types are:

<template_type spec> = <sequence_type>
| <string_types>

62

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Type Declaration

4.6.3.1 Sequences

The syntax is:

<sequence_fypes> iz “sequence” “<” <simple_type_specs “r <template_bounds “»”
<template_bounds = <positive_int_consts
| “UNBOUNDED”

<string_type> n= “string” “<” <template_bounds “s”

The argument to the string declaration is the maximum size of the strin g. If a positive inte-
£er maximum size is specified, the string is termed a bounded string.

A maximum size of UNBOUNDED indicates that the size of the string is unspecified.

Strings are singled out as a Separate, constructed type since many language have special

IDL Syntax and Semantics

type may permit substantial optimization in the handling of strings compared to what can
be done with sequences of general types.

4.6.4 Complex Declarator

4.6.4.1 Arrays

IDL defines fixed arrays. An array includes explicit sizes for each dimension,

The syntax for arrays is:

<identifier> <fixed_array_sizes*
“I” <positive_int_const> “

<array_declarators

<fixed_array_sizes

The array size (in each dimension) is fixed at compile time. When an array is passed as a
parameter in an operation invocation, all elements of the array are transmitted.

4.7 Exception Declaration

Hokk

Exception declarations permit the declaration of struct-like data structures which may be
returned to indicate that an exceptional condition has occurred during the performance of
arequest. The syntax is as follows:

<except_dcl> n= “exception” <identifiers “{” <member_list> “

may occur during the execution of a request. These standard exceptions are documented in
§4.12 on page 70.

It is unresolved whether it is possible to return arbitrary values alon g with an exception
using existing programming language exception mechanisms.

4.8 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defined as
part of an interface. An attribute definition is logically equivalent to declaring a pair of
accessor functions; one to retrieve the value of the attribute and one to set the value of the
attribute.

The syntax for attribute declaration is:
<attr_dcl> == [“readonly”] “attribute” <simple_type_spec> <declaratorss

The optional readonly keyword indicates that there is only a single accessor function—the
retrieve value function. Consider the following example:

64

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Operation Declaration

interface foo {

}:

enum material t {rubber, glass};
struct position_t {
float x, y;
};
attribute float radius;
attribute material t material;
readonly attribute position_t position;

. L L

The attribute declarations are equivalent to the following specification fragment:

* * L]
float get_radius();

boolean set_radius(in float r);
material_t get_material();

boolean set_material (in material_t m);
pogition_t get_position();

* * *

Attributes are inherited. An attribute name cannot be redefined to be a different type. See
§4.10 on page 68 for more information on redefinition constraints and the handling of
ambiguity,

4.9 Operation Declaration

Operation declarations in IDL are similar to C function declarations. The syntax is:

<op_dcls

<op_type_spec>

[<op_attributes] <op_type_spec> <identifiers <parameter_dciss
[<throw_exprs I [<context_exprs

<simple_type_spec>
| “void”

An operation declaration consists of:

[]

An optional operation attribute that specifies which invocation semantics the commu-
nication system should provide when the operation is invoked. Operation attributes are
described in §4.9.1 on page 66.

The type of the operation’s return result; the type may be any type which can be
defined in IDL. Operations that do not return a result must specify the void type.

An identifier that names the operation.

A parameter list that specifies zero or more parameter declarations for the operation.
Parameter declaration is described in §4.9.2 on page 66.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 65

IDL Syntax and Semantics

4.9.1

4.9.2

* An optional throw expression which indicates which exceptions may be returned as a
result of an invocation of this operation. Throw expressions are described in Section
§4.9.3 on page 67.

* An optional context expression which indicates which elements of the request context
may be consulted by the method that implements the operation. Context expressions
are described in §4.9.4 on page 67.

Some implementations and/or language mappings may require operation-specific pragmas
to immediately precede the affected operation declaration.

Operation Attribute

The operation attribute specifies which invocation semantics the communication service
must provide for invocations of a particular operation. An operation attribute is optional.
The syntax for its specification is as follows:

<op_atiributes> = “oneway”

The oneway keyword in an operation declaration indicates that the operation’s caller does
not expect (and may not be able to handle) a response. When a client invokes an operation
with the oneway attribute, the invocation semantics are best-effort, which does not guar-
antee delivery of the call; best-effort implies that the operation will be invoked at most
once. An operation with the oneway attribute must not contain any output parameters and
must specify a void return type.

If an <op_attributes is not specified, the invocation semantics is at-most-once if an exception
occurred; the semantics are exactly-once if the operation invocation returns successfully.

Parameter Declarations
Parameter declarations in IDL operation declarations have the following syntax:

<parameter_dcls> i= (" <param_del> { “,” <param_dcl> }*)
l ﬂ(” “)!1
<param_dcl> = <param_attributes <simple_type_spec> <declarators
“in”
' “Out”
| “inout”

<param_attributes>

A parameter declaration must have a directional attribute that informs the communication
service in both the client and the server of the direction in which the parameter is to be
passed. The directional attributes are:

* in - the parameter is passed from client to server.

* out - the parameter is passed from server to client,

66

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Operation Declaration

* inout - the parameter is passed in both directions.

It is expected that a server will not attempt to modify an in parameter. The ability to even
attempt to do so is language-mapping specific; the affect of such an action is undefined.

If an exception is returned as a result of an invocation, the values of the return result and
any out and inout parameters are undefined.

4.9.3 Throw Expressions

A throw expression specifies which exceptions may be returned (thrown) as a result of an
invocation of the operation. The syntax for its specification is as follows:

<throw_expr> e “throwu n(” <SCOped_name> { “,u <SCOped_name> }* u)”
The <scoped_name>’s in the throw expression must be previously defined exceptions.

In addition to any operation-specific exceptions specified in the throw expression, there
are a standard set of exceptions that may be signalled by the ORB. These standard excep-
tions are described in §4.12 on page 70.

The absence of a throw expression on an operation implies that there are no operation-spe-
cific exceptions. Invocations of such an operation are still liable to receive one of the stan-
dard exceptions.

4.9.4 Context Expressions

A context expression specifies which elements of the client’s context may affect method
binding in the object, The syntax for its specification is as follows:

<context_expr> i= “context” “(” <string_literals { " <string_literal> }* «)

The absence of a context expression indicates that an empty request context is to be asso-
ciated with requests for this operation.

The <string_literal>’s must satisfy the following constraints:

* The first character must be one in the range a-z or A-Z.
* All subsequent letters must be from the set a-z A-Z 0-9.
* Thelast letter may be an asterisk, '*',

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 67

IDL Syntax and Semantics

The mechanism by which a client associates values with the context identifiers is
described in Chapter 6.

4.10 Names and Scoping

Hesdek

(<scoped-names) consists of the concatenation of the current scope, the string “::”, and the
identifier. The following identifiers are scoped:

* types

* constants

* enumeration values
* exceptions

* attributes

* operations

Prior to starting to scan a file containing a IDL specification, the name of the current scope
is initially empty, “’. Whenever an interface, struct, or union keyword is éncountered,
the string “::”” and the associated identifier are appended to the name of the current scope;
upon detection of the termination of the interface, struct, or union, the trailing *::” and
identifier are deleted from the name of the current scope, As such, the scopes nest. Addi-

tionally, a new, unnamed, scope is entered when the parameters of an operation declara-

NOTE /Itis currently illegal to redefine an operation name or attribute name. This restriction may

be removed in a future version of the language.

Due to possible restrictions imposed by future lan guage bindings, IDL identifiers are case
Insensitive—i.e. two identifiers that differ only in the case of their characters are consid-
ered redefinitions of one another.

68

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Differences from C+

4.10.1

4.11

Type names defined in a Scope are available for immediate use within that scope.

A name can be used in an unqualified form within a particular scope; it will be resolved by

interface 2 {
typedef string<128> string t;
}i:

interface B {
typedef string<256> string t;
}i

interface C: A, B {
attribute string t Title;/* AMBIGUOUS! !} */
};

The attribute declaration in C is ambiguous, since the compiler does not know which
string_t is desired. The programmer must disambiguate the specification by providing a
scoped name for the type of the Title attribute, either A:string_t or B:string_t.

Differences from C++

The IDL grammar, while attempting to conform to the C-+ syntax, is somewhat more
strict. The current restrictions are as follows:

* A function return type is mandatory.

* A name must be supplied with each formal parameter to an operation declaration,

* A parameter list consisting of the single token void is no¢ permitted as a synonym for
an empty parameter list.

* Tags are required for structures, discriminated unions, and enumerations,

* Integer types cannot be defined as simply int or unsigned; they must be declared
explicitly as short or long.

* char cannot be qualified by signed or unsigned keywords,

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 69

IDL Syntax and Semantics

4.12 Standard Exceptions

ek

70

Specification.

The list of IDL, standard exceptions is provisional. In addition, a listing of “well-known
types” (such as objref t) needs to be added to the end of this chapter.

Standard Exceptions

const unsigned long eXcept_ok = 0;
const unsigned long éXxcept_user_supplied = except_ok + 1;

const unsigned long eXxcept_ORB_failure = except_user_supplied + 1;
eXception ORB_failure {// unspecified failure

string<256> reason;
}:

consgt unsigned long exXcept_ORB_einval = except_ORB_failure + 1;
exception ORB_einval {// bad argument pPresented

string<256»> reason;
};

const unsigned long eXcept_ORB_enomem = except_ORB_einval + 1;
eXception ORB_enomem {// ran out of memory

string<256> reason;
};

const unsigned long éxcept_ORB_etoobig = except_ORB_enomem + 1;

exception ORB_etoobig {// surpassed implementation limit
string<256> reason;

}:

const unsigned long except_ORB_messaging = except_ORB_etoobig + 1;
exception ORB_messaging {// messaging not possgible

string<256> reason;
}:

const unsigned long except _ORB_objref = except_ORB_messaging + 1;
exception ORB_objref {// invalid object reference

string<256»> reason;
}i:

const unsigned long except_ORB_eperm = except ORB_objref + 1;

exception ORB eperm {// no permission for operation
string<256> reason;

}:

const unsigned long except_ORB_internal = e€xcept_ORB_eperm + 1;
exception ORB_internal {// ORB internal error

string<256> reason;

}: :

const unsigned long éXcept_ORB_marghal = except ORB_internal + 1;

exception ORB_marshall {// error marshalling argument /result
string<256> reason;

};

const unsigned long except _ORB_initialize = except_ORB_marshal + 1;
exception ORB_initialize {// ORB initialization failure

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

71 ;
|

IDL Syntax and Semantics

string<256> reason;

Y

const unsigned long except ORB_class_epv = except_ORB_initialize + 1;
exception ORB_class_epv {// epv not found

gstring<256> reason;
Y

const unsigned long except_ORB_obj_act = except_ORB_class_epv + 1;

exception ORB_obj_act {// object activation function not found
string<256> reason;

Y

72

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

S}

C Language Stub Mapping

5.1

This chapter describes how concepts used in IDL are mapped into The C Programming
Language—that is, how a C programmer uses an interface defined in IDL.

Scoped Names

The C programmer must always use the global name for a type, constant, exception, or
operation. The C global name corresponding to an IDL global name is derived by convert-
ing occurrences of “::” to “_” (an underscore) and eliminating the leading underscore.

Consider the following example:

typedef string<256> filename_t;
interface exampleO {
enum color {red, green, blue};
union bar switch (enum foo {room, bell}) { ... };

L4 L *

Y

Code to use this interface would look as follows:

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 73

C Language Stub Mapping

#include “exampleO.h”

filename_t FN;
example0_color C = exampleO_red;
exampleO_bar myUnion;

gwitch (myUnion._d) {

case exampleO_bar room: ¢ ¢ o
cage example0_bar_bell: o ¢
Y

Note that the use of underscores to replace the “::” separators can lead to ambiguity if the
IDL specification contains identifiers with underscores in them. Consider the following
example:

typedef long foo_bar;
interface foo {
typedef short bar;/* A legal IDL statement, but ambiguous in C */

* L L J

Y

Due to such ambiguities, it is advisable to avoid the indiscriminate use of underscores in
identifiers.

5.2 Mapping for Interfaces

All interfaces must be defined at global scope (no nested interfaces). The mapping for an
interface declaration is as follows:

interface examplel {
long opl(in long argl);
Y

The preceding example generates the following C declarations!:

typedef objref_t examplel;
extern long examplel_opl(examplel object,
long argl, exception_t *except);

All object references (actually typed interface references to an object) are of the well-
known, opaque type objref_t. To permit the programmer to decorate a program with typed
references, a type with the name of the interface is defined to be an objref_t. The literal

1. §5.12 on page 81 describes the additional arguments added to an operation in the C mapping.

74

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Inheritance and Operation Names

OBJREF_NIL is legal wherever an objref_t may be used; it is guaranteed to fail the equality

test with any real objref_t.

IDL permits specifications in which arguments, return results, or components of con-
structed types may be interface references.Consider the following example:

#include “examplel.idl”
interface example2 {
examplel op2();
Y
This is equivalent to the following C declaration:

#include “examplel.h”

typedef objref_t example2;
extern examplel example2_op2(example2 object, exception_t *except);

A C fragment for invoking such an operation is as follows:
#include “example2.h”

examplel exl;

example2 ex2;

exception t except;

/* code for binding ex2 */

exl = example2_op2(ex2, &except);

5.3 Inheritance and Operation Names

IDL permits the specification of interfaces that inherit operations from other interfaces.

Consider the following example:

interface example3 : examplel {
void op3(in long arg3, out long argd):;
};

This is equivalent to the following C declarations:

typedef objref_t example3;
extern long example3_opl(example3 object,
long argl, exception_t *except);
extern void example3_op3 (example3 object,
long arg3, long *argd, exception_t *except);

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

75

C Language Stub Mapping

As a result, an object written in C can access opl as if it was directly declared in exam-
ple3. Of course, the programmer could also invoke examplel_op1 on an objref_t of type
example3; the virtual nature of operations in interface definitions will cause invocations
of either function to cause the same method to be invoked.

5.4 Mapping for Constants

Constant identifiers can be referenced at any point in the user’s code where a literal of that
type is legal. In C, these constants are #defined.

The fact that constants are #defined may lead to ambiguities in code. All names which are
mandated by the mappings for any of the structured types below start with an underscore.
As aresult, these possible ambiguities may be avoided if the programmer avoids using any
identifiers in IDL which start with an underscore.

5.5 Mapping for Basic Data Types

The basic data types have the mappings shown in TBL. 4 on page 76.

TBL. 4 Data Type Mappings

IDL C

short short

long long

unsigned short unsigned short
unsigned long unsigned long
float float

double : double \
char char

boolean long

octet unsigned char
enum unsigned long

5.6 Mapping for Structure Types

IDL structures map directly onto C structs.

76 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Mapping for Union Types

5.7 Mapping for Union Types

5.8

IDL discriminated unions are mapped onto C structs. Consider the following IDL decla-

ration:

union Foo switch (long) {
case 1l: long x;
cage 2: float y:
default: char z;

};

This is equivalent to the following struct in C:

typedef struct {

long _4;
union {
long x;
float y:
char z;
} _u;
} Foo;

The discriminator in the struct is always referred to as _d; the union in the struct is always

referred to as _u.
Reference to union elements is as in normal C:
Foo *v;
/* make a call that returns a pointer to a Foo in v */
switch(v->_d) {

cage 1l: printf(”x

cage 2: printf(”y
default: printf (“z

%1ld\n”, v->_u.x); break;
%f\n”, v->_u.y); break;
%c\n”, v->_u.z); break;

Mapping for Sequence Types

The sequence IDL data type permits passing of open arrays between objects. Consider the

following IDL declaration:

typedef sequence<long,l10> veclO;

In C, this is converted to:

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

77

C Language Stub Mapping

typedef struct {
unsigned long _maximum;
unsigned long _length;
long *_buffer;

} veclO;

An instance of this type is declared as follows:
vecld x = {10L, 0L, (long *)NULL):;

Prior to passing X as an in parameter, the programmer must set the _buffer member to
point to a long array of 10 elements, and must set the _length member to the actual num-
ber of elements to transmit.

Prior to passing &x as an out parameter (or receiving a veclO as the function return), the
programmer does nothing. The client stub will allocate storage for the returned buffer
using malloc(); for bounded sequences, it allocates a buffer of the specified size, while for
unbounded sequences, it allocates a buffer big enough to hold what was returned by the
object. Upon successful return from the invocation, the _maximum member will contain
the size of the allocated array, the _buffer member will point at the allocated storage, and
the length member will contain the number of values that were returned in the _buffer
member. The client is responsible for freeing the allocated storage using free(). The current
contents of the _buffer member is overwritten with a pointer to the storage allocated by the
stub.

Prior to passing &x as an inout parameter, the programmer must set the _buffer member
to point to a long array of 10 elements. For an unbounded sequence, the programmer must
set the maximum member to the actual size of the array. The _length member must be set
to the actual number of elements to transmit. Upon successful return from the invocation,
the length member will contain the number of values that were copied into the buffer
pointed to by the Duffer member.

For bounded sequences, it is an error to set the _length or _maximum member to a value
larger than the specified bound.

Two sequence types are the same type if their sequence element type and size arguments
are identical. For example,

const long SIZE = 25;
typedef int seqtype:

typedef sequence<int, SIZE> sl;
typedef sequence<int, 25> 82;
typedef sequence<segtype, SIZE> s83;
typedef sequence<segtype, 25> s4;

78

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Mapping for Strings

declares s1, s2, s3, and s4 to be of the same type.

The IDL type

sequence<type, size>

maps to

#ifndef _IDL_SEQUENCE_type_ size_defined
#define _IDL_SEQUENCE_type_size_defined
typedef struct {

long maximum;

long length;

type *buffer;
} _IDL_SEQUENCE_type_size
#endif/* _IDL_SEQUENCE_type_sgize defined */

The ifdef’s are needed to prevent duplicate definition where the same type is used more

than once. The type name used in the C mapping is the type name of the effective type,
e.g.in

typedef long FRED;
typedef sequence<FRED, 10> FredSeq;

the sequence is mapped onto struct { ... } _[DL_SEQUENCE_long_10;

These generated type names may be used to declare instances of a sequence type.

5.9 Mapping for Strings

IDL strings are mapped to 0-byte terminated character arrays; i.e. the length of the string
is encoded in the character array itself through the placement of the 0-byte. Consider the

following IDL declarations:

typedef string<l0> sten;
typedef string<UNBOUNDED> sinf;

In C, this is converted to:

typedef char *sten;
typedef char *ginf;

Instances of these types are declared as follows:

sten sl
ginf =2

NULL;
NULL;

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

79

C Language Stub Mapping

Two string types are the same type if their size arguments are identical. For example,
const long SIZE = 25;

typedef string<SIZE> sl;
typedef string<25> 82;

declares s1 and s2 to be of the same type.

Prior to passing sl or s2 as an in parameter, the programmer must assign the address of a
character buffer containing a 0-byte terminated string to the variable.

Prior to passing &s1 or &s2 as an out parameter (or receiving an sten or sinf as the return
result), the programmer does nothing. The client stub will allocate storage for the returned
buffer using malloc(); for bounded strings, it allocates a buffer of the specified size, while
for unbounded strings, it allocates a buffer big enough to hold the returned string. Upon
successful return from the invocation, the character pointer will contain the address of the
allocated buffer. The client is responsible for freeing the allocated storage using free(). If
the pointer is non-NULL when a call is made, it is overwritten with a pointer to the storage
allocated by the stub.

Prior to passing &sl or &s2 as an inout parameter, the programmer must assign the
address of a character buffer containing a 0-byte terminated array to the variable. Upon
successful return from the invocation, the returned 0-byte terminated array is copied into
the same buffer. If it was a bounded string, then the size of the returned string is limited by
the declared size of the string type; if it was an unbounded string, then the size of the
returned string is limited by the size of the string passed as input. Due to this restriction,
use of inout string parameters is deprecated.

5.10 Mapping for Arrays

IDL arrays map directly to C arrays. All array indices run from O to <size - 1>.

If a return result to an operation is an array, the array storage is dynamically allocated by
the stub and the following structure is returned to the caller:

struct array desc {
void *_buffer;
};

The _buffer member of the structure contains the address of the first element of the
dynamically allocated array, cast to a (void *). The caller must cast this to a pointer of the
correct type to use the array. When the data is no longer needed, the programmer should
return the dynamically allocated storage by calling free(). :

80

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Mapping for Exception Types

5.11

Mapping for Exception Types

Each defined exception type is defined as a struct tag and a typedef with the C global name
for the exception. An identifier for the exception, in string literal form, is also #defined.
For example:

exception foo {
long dummy;
Y

yields the following C declarations:

typedef struct foo {
long dummy;
} foo;
#define ex foo “unique jdentifier for ex_foo”

The above definition of the exception identifier is simply an example. The exact format of
this identifier will be described in later versions of this document.

5.12 Implicit Arguments {0 Operations

From the point of view of the C programmer, all operations declared in an interface have
an implicit leading objref_t input parameter (the target object) and a trailing (exception_t
*) output parameter. The leading parameter permits the programmer to designate which
object is to process the request; the trailing parameter permits the return of exception
information. See examples in previous sections.

If an operation in an IDL specification has a context specification, then an argument of
type context_t follows the leading objref_t and precedes any operation-specific argu-
ments.

As described above, the objref_t type is an opaque type. The exception_t type is partially
opaque; a subsequent section provides a description of the non-opaque portion of the
exception structure and an example of how to handle exceptions in client code. The
context_t type is opaque; see Chapter 6 for more information on how to create and manip-
ulate context objects.

5.13 Interpretation of Functions with Empty Argument Lists

As in C++, a function declared with an empty argument list is defined to take no opera-
tion-specific arguments.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 81

C Language Stub Mapping

5.14 Argument Passing Considerations

Regardless of the IDL type being passed, if the IDL signature specifies that an argument is
an out or inout parameter, then the caller must always pass the address of a variable of
that type (or the value of a pointer to that type); the callee must always dereference to get
to the type. For in parameters, the value of the parameter is passed.

Consider the following IDL specification:

interface foo {
typedef long Vector[25];

void bar(out Vector x):;
}:

Client code for invoking the bar operation would look like:

foo object;
Vector x;
exception_t except;

/* code to bind objref_t to instance of foo */
foo_bar(object, &x, &except):;

Classic C compilers, when asked to take the address of an array, will invariably return the
address of the first element. ANSI C, on the other hand, defines the address of the array to
be different from the address of the first element. As a result, it is imperative that one com-
pile both the client code and stub code with the same compiler so as not to generate a dis-
connect across the stub interface.

5.15 Return Result Passing Considerations

When an operation is defined to return a non-void return result, the following rules hold:

1. If the return result is one of the types float, double, long, short, unsigned long,
unsigned short, char, boolean, octet, objref_t, or an enumeration, then the value is
returned as the operation result.

2. If the return is any other type, then a pointer to the return value is returned as the oper-
ation result.

Consider the following interface:

interface X {
struct y {
long a;

82

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Dynamic Storage Management

5.16

float b;
};

long opl();
y op2();
}

The following C declarations ensue from processing the specification:

typedef objref t X;
typedef struct X_y {

long a;
float b;
} X y;

extern long X opl(X object, exception_t *except):;
extern X y *X op2(X object, exception_t *except):;

Summary of Argument/Result Passing

Data Type Pass In
short value
long value

unsigned short value
unsigned long value

float value
double value
boolean value
char value
octet value
enumeration value

object reference objref_t value

struct addr of struct
union addr of struct
string addr of 1st char
sequence addr of seq. struct
array addr of 1st elem

Pass Out/inout
addr of variable to hold value
addr of variable to hold value
addr of variable to hold value
addr of variable to hold value
addr of variable to hold value
addr of variable to hold value
addr of variable to hold value
addr of variable to hold value
addr of variable to hold value
addr of variable to hold value
addr of variable to hold objref_t
addr of variable to hold struct
addr of variable to hold struct
addr of (char *) variable

Return Result
receive value

receive value

receive value

receive value

receive value

receive value

receive value

receive value

receive value

receive value

receive value of objref_t
receive value of struct
receive value of struct
receive char *

addr of variable holding seq structreceive value of sequence struct

addr of 1st element

Dynamic Storage Management

receive value of array descriptor

Client stubs must allocate storage for unbounded sequences and unbounded strings passed
as out parameters; they must also allocate storage for unbounded sequences, unbounded
strings, and arrays which are return results. It is the responsibility of the caller to free this

storage using free().

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 83

C Language Stub Mapping

5.17 Handling Exceptions in Client CDL

The exception_t type is partially opaque; the C declaration contains at least the following:

typedef struct exception_t ({
unsigned long _id;
char *_ex_id;
void *_value;

} exception_t;

Upon return from an invocation, the trailing exception parameter indicates whether the
invocation terminated successfully; if not, it gives an indication of which exception
occurred and provides access to any exception parameters signalled by the object.

Consider the following example:

interface exampleX {
exception BadCall {
string<80> reason;
};

void op() throw(BadCall);
};

This interface defines a single operation which returns no results and can signal a BadCall
exception. The following user code shows how to invoke the operation and recover from
an exception:

84

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Handling Exceptions in Client CDL

#include “exampleX.h”

exception_t ex;
exampleX obj;
exampleX_ BadCall *bc

/*
* gome code to initialize obj to a reference
* to an object supporting the exampleX interface

*/
exampleX op(obj, &ex);
if (ex._id == except_ok) {
/* process out and inout arguments */
} else {
if (ex._id != except_user defined) {
/* process standard exceptions */
} else {
if (stromp(ex._ex_id, ex_exampleX BadCall) == 0) {

bc = (exampleX_BadCall *) (ex._value);
fprintf(stderr, “exampleX_op() failed - reason: %3\n”,
bec->reason);
} else { /* should never get here ... */
fprintf(stderr, “unknown exception - %s\n”,
ex.user_identifier);

}
exception_free(&ex); /* free any storage associated with exception */

}
}

Three cases can occur:

1. the exception identifier is except_ok, in which case the request was performed success-
fully

2. the exception identifier is except_user defined, in which case it is a user-defined excep-
tion

3. the exception identifier identifies a standard exception

In the last two cases, the _value member of the exception_t points to the structure correspond-
ing to the exception with that exception identifier, After processing an exception, the pro-
gram code should invoke the following function:

extern void exception_free(exception t *except);

This function will return any storage which was allocated in the construction of the excep-
tion_t.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 85

C Language Stub Mapping

5.18 Method Routine Signatures

The signatures of the methods used to implement the object depend not only on the lan-
guage binding, but also on the choice of object adapter. Different object adapters may pro-
vide additional parameters to access object adapter-specific features.

Most object adapters are likely to provide method signatures that are similar in most
respects to those of the client stubs. In particular, the mapping for the operation parameters
expressed in IDL should be the same as for the client side.

See §9.3 on page 132 for the description of method signatures for implementations using
the Basic Object Adapter.

5.19 Include Files

Multiple interfaces may be defined in a single source file. By convention, each interface is
stored in a separate source file. All IDL compilers will, by default, generate a header file
named Foo.h from Foo.idl. This file should be #included by clients and implementations
of the interfaces defined in Foo.idl.

Inclusion of Foo.h is sufficient to define all global names associated with the interfaces in
Foo.idl and any interfaces from which they are derived.

A source file containing interface specifications written in IDL must have a “.idl” exten-
sion.

86

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

6

Dynamic Invocation Interface

6.1 Overview

ek

The ORB dynamic invocation interface allows dynamic creation and invocation of
requests to objects. A client using this interface to send a request to an object obtains the
same semantics as a client using the operation stub generated from the type specification.

A request is comprised of an object handle, an operation, and a list of parameters. The
ORB applies the implementation-hiding (encapsulation) principle to requests.

In the dynamic invocation interface, parameters in a request are supplied as elements of a
list. Each element is an instance of the a NamedValue (see below).

Datatypes are normally provided through the interface in native (eg. compiler generated)
format. It is an issue, in addition to passing structures in native form as to whether it will
be allowed for constructed datatypes to be provided as an exploded structure defined as a
list of lists for the dynamic invocation interface. Note that however provided on the client

side, the datatypes always appear in native format to the object implementation.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 87

Dynamic Invocation Interface

seskok

seskesk

Individual elements can themselves be lists, so that arbitrary constructed types can be rep-
resented as a nested list.

Parameters supplied to a request may be subject to run-time type checking upon request
invocation. Parameters must be supplied in the same order as the parameters defined for
the operation in the Interface Repository.

The IDL datatype set does not currently support the concept of “void *” (eg. any) which is
necessary for certain servers. The dynamic invocation interface currently does define this
concept. The use of this construct is not resolved (resolution depends in part on the issue

of datatype representation).

The following type should be a well-known datatype in IDL. It can be used either as a
parameter type directly or as the building block for parameter lists. NamedValue is defined
in the ‘C’ language by:

typedef struct
{

ArgName Name; /* argument name */

typecode_t Datatype; /* argument datatype */

(void *) Value; /* argument value */

long Len; /* length/count of argument value */
NVFlags Flags; /* argument flags */

} Name

dvalue, * NVList;

typecode_ta well-known opaque type that provides a mechanism for identifying all of the
simple types(float, double, ...), constructed types (union, sequence,..) and well-known
types (objref_t, NamedValue, NVList, typecode_t, ...), and can be extended to include
arbitrary types defined in an IDL type specification. The list of valid typecode_t mnemon-
ics for types and their type codes that must be supplied in an implementation is described
in section 7.6 on page 115.

The N'VFlags field is defined as a bitmask (long) and which may contain the following flag
values:

IN_ARG the associated value is an input only argument
OUT_ARG the associated value is an output only argument
INOUT_ARG the associated value is an in/out argument

IN_COPY_VALUE copies the value (see below)

OUT_LIST_MEMORY use list memory for output values (see below)

88

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Request Routines

DEPENDENT_LIST see below

The following routines return a status typedef’ed as ORBStatus. This status code is the
same as the “well-known” status code returned in the exception structure.

6.2 Request Routines

sk

6.2.1 ORB_CreateRequest

ORBStatus ORB_CreateRequest (

objref_t Objref, /* object on which to invoke reqg */
OpnName Operation, /* intended operation on object */

NVList ArgList, /* (in,out) arguments to operation */
CtxObj Context, /* context object to be used during opn */
NVList CtxOverrides, /* override context */

NamedvValue * Result, /* (in,out) operation result */

RegHnd * Request, /* (out) newly created request */

ORBExc * Exc); /* (in,out) exception */

Creates a request “object”. The ‘ArgList’, if specified, contains a list of arguments (input
and output) which become associated with the request. If ‘ArgList’ is omitted, the argu-
ments (if any) must be specified using the AddArgToRequest call below.

If specified, the ‘ArgList’ becomes associated with the request; and until the InvokeRe-
quest call has completed (or the request has been deleted), the ‘ArgList’ (and any data it
points to) is assumed to be unchanged.

For each argument, minimally its ‘Value’ and ‘Len’ must be specified. An argument’s
datatype, name, and usage flags (i.e in, out, in/out) may also be specified. If so indicated,
arguments are validated for datatype, order, name, and usage correctness against the set of
arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow argu-
ments to be specified out of order) by doing ordering based upon argument name.

The memory management definition used in the dynamic invocation mechanism is not
agreed to.

Setting the OUT_LIST_MEMORY flag for an argument controls the memory allocation
mechanism for output arguments that are dynamically allocated. Output arguments of this
type are dynamically allocated off of, and associated with, the list structure (if passed in).
When the list structure has been freed, the associated dynamically allocated memory is
also freed.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 89

Dynamic Invocation Interface

ook

It is unresolved as to whether the context override list will be allowed in a dynamic invo-
cation.

Context values from the specified context object are effectively passed to the intended
method. If ‘CtxOverrides’ are specified, these values logically override those, and are
merged with, values in the context object. If no context object is specified, the default con-
text object is used. See section §6.5 on page 94 for a further description of context objects.

The operation name is a string that conforms to the IDL rules for naming identifiers.

6.2.2 ORB_AddArgToRequest

ORBStatus ORB_AJJdArgToRequest (

RegHnd Request, /* request to be modified */

ArgName Name, /* argument name */

ArgType Datatype, /* argument datatype */

(void *) value, /* argument value to be added */
long Len, /* length/count of argument value */
NVFlags Flags, /* flags */

ORBExc * Exc); /* (in,out) exception */

AddArgToRequest incrementally adds arguments to the request.

For each argument, minimally its ‘Value’ and ‘Len’ must be specified. An argument’s
datatype, name, and usage flags (i.e in, out, in/out) may also be specified. If so indicated,
arguments are validated for datatype, order, name, and usage correctness against the set of
arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow argu-
ments to be specified out of order) by doing orderin g based upon argument name.

The arguments added to the request become associated with the request and are assumed
to be unchanged until the InvokeRequest has completed (or the request has been deleted).

Arguments may be associated with a request by specifying them on the CreateRequest call
or by adding them via AddArgToRequest. Using both methods for specifying arguments
on the same request is not currently supported.

If the IN_COPY_VALUE flag is set, the argument value is first copied (presumably so that
memory associated with the value can be used for some other purpose). This flag is
ignored for in/out and out arguments.

90

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Deferred Synchronous Routines

6.2.3 ORB_InvokeRequest

ORBStatus ORB_InvokeRequest (

RegHnd Request /* request to be invoked */
InvFlags Flags, /* invocation flags */
ORBExc¢ * Exc):; /* (in,out) exception */

Calls the ORB, which performs method resolution and invokes the associated method.

6.2.4 ORB_DeleteRequest
ORBStatus ORB_DeleteRequest (
RegHnd Request) ; /* the request to be deleted */

ORBExcC * Exc): /* (in,out) exception */

Deletes the request and all its associated memory.

6.3 Deferred Synchronous Routines

6.3.1 ORB_SendRequest

ORBStatus ORB_SendRequests (

RegHnd * Requests, /* request(s) to be sent */

long Count, /* number of requests to be sent */
InvFlags Flags, /* invocation flags */

ORBEXC * Exc); /* (in,out) exception */

Dispatches each request in the list. One or more requests can be specified using this rou-
tine. In addition to supporting the aforementioned invocation flags.

The following invocation flags are currently defined for the SendRequest:

INV_TERM_ON_ERR If one of the requests causes an error, the remaining requests
are not sent.

INV_NO_RESPONSE Indicates that the invoker does not intend to wait for a response
nor does it expect any of the output arguments (in/out and out)
to be updated. This option may be specified even if the opera-
tion has not been defined to be one-way.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 91

Dynamic Invocation Interface

6.3.2 ORB_GetResponse

ORBStatus ORB_GetResponse (

RegHnd * Request, /* (in,out) the request */
RespFlags Flags, /* response flags */
ORBEXxcC * Exc); /* (in,out) exception */

Receives the response of the next request that has completed, or the response of a specified
request. If the ‘Request’ is NULL, the caller receives the next response; otherwise the
response for the indicated request is returned.

The following response flags are defined for GetResponse:

| RESP_NO_WAIT Indicates that the caller does not want to wait for a response.

6.4 List Routines

Hekok Memory management support in the List routines of the dynamic request invocation is not
3 resolved. The particular issue is whether the ORB will allocate storage for return values
% and out parameters according to the list allocation mechanism described here, or using the
| same policy as for stubs. Alternatively stated, It is still unresolved whether an ORB mech-
anism, such as lists, is used to manage memory in both the dynamic and static interfaces;

or memory managment is always handled in a language specific manner.

6.4.1 ORB_CreateltemList

ORBStatus ORB_CreateItemList (

long Count, /* number of items to allocate for list */
NVList * List):; /* (out) newly created list */
ORBExcC * Exc):; /* (in,out) exception */

Allocates a list of the specified size, and clears it for initial use. List items may be added to
the list using the AddItemToList routine. Alternatively, they may be added by indexing
directly into the list structure.

| 92 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

List Routines

6.4.2 ORB_AdditemToList

ORBStatus ORB_AddItemToList (

NvVList List, /* (in,out) 1list to be modified */
ArgName Name, /* name of item */

ArgType Datatype, /* item datatype */

(void *) value, /* item value */

long Len, /* length of item value */

NVFlags Flags); /* item flags */

ORBExc * Exc); /* (in,out) exception */

Adds a new item to the indicated list. The item is added after the previously added item. If
the IN_COPY_VALUE flag has been set, a copy of the value is made and associated with
the list (i.e. the program variable passed in may be used for some other purpose).

If a list structure is added as an item (e.g. a “sublist”) the DEPENDENT_LIST flag may be
specified which indicates that the sublist should be freed when the parent list is freed.

6.4.3 ORB_Freelist

ORBStatus ORB_FreelList (
NVList List); /* list to be freed */
ORBExc * Exc); /* (in,out) exception */

Frees the list structure and any associated memory.

6.4.4 ORB_AlIocateListMemory

ORBStatus ORB_AllocateListMemory (

NVList List, /* ligt *y
long Size, /* amount of nmemory to allocate */
(void *) Buf, /* (out) allocated memory */

ORBExc * Exc); /* (in,out) exception */

The requested amount of memory is allocated and isg associated with the
indicated 1list. When the list is freed all associated memory is freed
along with it.

6.4.5 ORB_FreeListMemory

ORBStatus ORB_FreeListMemory (
NVList List); /* list from whose memory is to be freed */
ORBExc * Exc); /* (in,out) exception */

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 93

Dynamic Invocation Interface

6.4.6

6.5

Frees any dynamically allocated memory associated with the list (e.g. those items that
were copied on a list operation, or output arguments whose memory was dynamically allo-
cated and associated with the list). The list structure itself is left unchanged.

ORB_GetListCount

ORBStatus ORB_GetListCount (

NVList List, /* list from which to retrieve the count */
long * Count):; /* (out) size of list ¥/
ORBEXC * Exc); /* (in,out) exception */

Returns the total number of items allocated for this list.

Context Objects

kg

A context object contains a list of properties, each consisting of a name and a string value
associated with that name. By convention, context properties represent information about
the client, environment, or circumstances of a request that are inconvenient to pass as
parameters.

Context properties can represent a portion of a client’s or application’s environment that is
meant be propagated to (and made implicitly part of) a server’s environment (for example,
the XWindows window identifier, or user preference information). Once a server has been
invoked (i.e., subsequent to the properties being propagated), the server may query its
context object for these properties.

In addition, the context associated with a particular operation is passed as a distinguished
parameter, allowing particular ORBs to take advantage of context properties, for example,
using the values of certain properties to influence method binding behavior, server loca-
tion, or activation policy.

Context objects may be created and deleted, and individual context properties may be set
and retrieved. There will often be context objects associated with particular processes,
users, or other things depending on the operating system, and there may be conventions
for having them supplied to calls by default. It may be possible to keep context informa-
tion in persistent implementations of context objects, while other implementations may be
transient. Persistent context objects have a name associated with them and are called
“named context objects”.

It is unresolved whether the ORB directly supports persistent context objects, or if the
ORB is simply a client of context objects, which could have a variety of persistent or non-

persistent implementations.

94

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Context Object Routines

6.5.1

An operation definition may contain a clause specifying those context properties that may
be of interest to a particular operation. These context properties comprise the minimum set
of properties that will be propagated to the server’s environment (although a specified
property may have no value associated with it).

When a context clause is present on an operation declaration, an additional argument is
added to the stub and skeleton interfaces. When an operation invocation occurs via either
the stub or dynamic invocation interface, the ORB causes the properties which were
named in the operation definition in IDL and which are present in the client’s context
object , to be provided in the context object parameter to the invoked method.

Through the dynamic invocation interface you can provide a list of name-value pairs that
override the corresponding properties values in the context argument; and can serve to
temporarily change environment information or method resolution behavior.

The ORB may choose to pass more properties than those specified in the operation decla-
ration. These properties may be used to supplement those properties specified on the oper-
ation definition and may also be propagated to the server’s environment,

Logical structure of the Context Object

Context objects may be “chained” together to achieve a particular defaulting behavior,
Properties defined in a particular context object effectively override those properties in the
next higher level. This searching behavior may be restricted by specifying the appropriate
scope and “failover” options on the GetCtx Values call.

Context objects may be named.

6.6 Context Object Routines

Hkek

When performing operations on a context object, properties are represented as named
value lists. Each property value corresponds to a named value item in the list.

A property name is represented by a string of characters (see section 4.1.3 on page 47 for
the valid set of characters that are allowed). Property names are stored preserving their
case, however names cannot differ simply by their case.

The Context Object routines have not yet been cast as IDL-compliant interfaces.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 95

Dynamic Invocation Interface

6.6.1 ORB_GetDefaultCtx
ORBStatus ORB_GetDefaultCtx (
CtxObj * CtxObject, /* (out) context object */

ORBExc * Exception); /* (in,out) exception */

Returns a reference to the default process context object.

6.6.2 ORB_SetCtxValues

ORBStatus ORB_SetCtxValues (

CctxObj CtxObject, /* context object to modify */
NVList AttValues, /* property values to be changed */
ORBExc * Exception); /* (in,out) exception */

Sets one or more property values in the context object.

6.6.3 ORB_GetCtxValues

ORBStatus ORB_GetCtxValues (

CtxObj CtxObject, /* context object */

CtxName StartScope, /* search scope */

CtxFlags OpFlags, /* operation flags */

string AttName, /* name of property to retrieve */
NVList * AttValues, /* (out) requested property(s) */
ORBExc * Exception); /* (in,out) exception */

Retrieves the indicated context property value(s). If ‘AttName’ has a trailing wildcard
character (“*”), then ‘AttValues’ may contain more than one property value.

Scope indicates the context object level at which to initiate the search for the specified
properties (e.8. User, Group, System). If the property is not found at the indicated level,
the search continues (“fails over™) up the context object tree until a match is found or all
context objects in the chain have been exhausted. Valid scope names are implementation
specific.

If scope name is omitted, the search begins with the specified context object. It is invalid
to specify a scope name that is at a “lower” level than that of ‘CtxObject’.

The following operation flags may be specified:

CTX_NO_FAILOVER Specifies that search failover is not to be performed; i.e. the
search is limited to the specified (or defaulted) scope.

96 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Context Object Routines

6.6.4 ORB_DeleteCtxValues

ORBStatus ORB_DeleteCtxValues (

CtxObj CtxObject, /* context object to modify */
NVList AttValues, /* property values to be deleted */
ORBExc * Exception); /* (in,out) exception */

Deletes the specified property and its value from the context object.

6.6.5 ORB_CreateCtx

ORBStatus ORB_CreateCtx (

CtxObj ParentCtx, /* context object to act as “parent” */
Ctx0Obj * CtxObject, /* (out) context object */
ORBExc * Exception); /* (in,out) exception */

Creates a transient context object. If ‘ParentCtx’ is specified, the returned context object
is chained into the parent context. That is, searches on the created context object will
“failover”, if necessary, to its parent. If no parent context is specified, an orphan context
object is returned and no failover will be done.

6.6.6 ORB_DeleteCtx

ORBStats ORB_DeleteCtx (

} CtxObj CtxObject, /* context object to be deleted */
f CtxFlags Flags, /* operation flags */
ORBExc * Exception); /* (in,out) exception */

Deletes the indicated context object.
The following option flags may be specified:

CTX_DELETE_CHILDREN
Deletes the indicated context object and all of its children con-
text objects, as well.

CTX_DISCONNECT_CHILDREN
Disconnects parent context object from its children, prior to
being deleted. If neither option is specified, and there are one or
more children context objects, an error will be returned.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 97

Dynamic Invocation Interface

6.6.7 ORB_OpenCtx

ORBStatus ORB_OpenNamedCtx (

CtxName Name, /* name of context object */
CtxModes Mode, /* read,write access */
CtxObj * CtxObject, /* (out) context object */
ORBExc¢ * Exception); /* (in,out) exception */

Opens a named context object for reading or writing.

This routine allows access to named (persistent) context objects. Changes to a context
object opened in this fashion are made permanent.

98 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

/

The Interface Repository

7.1

The Interface Repository is the component of the ORB which provides persistent storage
of interface definitions— it manages and provides access to a collection of object defini-
tions specified in IDL.

Philosophy

An ORB provides distributed access to a collection of objects using the objects’ publicly
defined interfaces specified in IDL. The Interface Repository provides for the storage, dis-
tribution and management of a collection of related objects’ interface definitions.

In order for an ORB to function correctly, it may require access to the definitions of the
objects it is handling. Object definitions can be made available to an ORB in one of two
forms:

* By incorporating the information procedurally into stub routines (e.g., as code which
maps C language subroutines into communication protocols)

* As objects accessed through the dynamically accessible Interface Repository (i.e., as
“interface objects” accessed through IDL-specified interfaces).

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 99

The Interface Repository

Note that the IDL compiler and the Interface Repository provide similar services within
the OMA. IDL specifications are input into both and both output interface information
(either in a canonical or procedural form) which is used by clients, language bindings, and
ORBs. It may be best to consider the Interface Repository as “directory software” that
manages the storage, distribution, and management of interface specifications and the IDL
compiler as the implementation of the primary operation provided on the “interface speci-
fication objects” maintained in the Interface Repository.

In particular, the ORB may use object definitions maintained in the Interface Repository to
interpret/handle the values provided in a request

* To provide type-checking of request signatures (whether the request was issued
through the API or through a stub)

* To assistin checking the correctness of interface inheritance graphs

* To assist in providing Interoperability between different ORB implementations.

As the interface to the object definitions maintained in an Interface Repository is public,
the information maintained in the Repository may also be used by clients and services. For
example, the Repository may be used:

* To manage the installation and distribution of interface definitions

* To provide components of a CASE environment (e.g., an interface browser)

* To provide interface information to language-bindings (e.g., a compiler)

* To provide components of end-user environments (e.g., a menu bar constructor).

The interfaces defined here are the read-only interfaces required by clients of an ORB to
enable their use of the dynamic invocation interface. In particular, the interfaces specified
here are designed to allow clients to dynamically collect the information needed to con-
struct requests. Note that the ORB provides an operation that allows a client to map any
object reference to the object reference of the interface to which the object belongs; i.e., to
an entry in the Interface Repository. This allows clients to discover the operations (and
their signature) supported by an object.

7.2 Scope of an Interface Repository

Interface definitions are maintained in the Interface Repository as a set of objects which
are accessed through a set of IDL-specified interface definitions.

Each Interface Repository maintains a collection of related interface definitions called an
interface set.! An interface set may be local to a user (one set per user), may be local to a
group of users on a single system, or may be globally available to all users within a net-

work domain. Similarly, an interface set may describe all objects a client may use or it

100

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Implementation Dependencies

may define only a subset of the objects a client may use (i.e., a client may need to use more
than one interface set).

Each implementation of the Interface Repository determines the scope of an interface set.
The scope of an interface set determines:

* The breadth of availability: the number of clients and services (ORBs) who use an
instance of an Interface Repository.

* The width of availability: the number of Interface Repositories a client or service
(ORB) may/must use.

The standard does not specify how interface sets relate to each other—how they are com-
bined. For example, one implementation may require that all interface definitions an appli-
cation uses (from the “root interfaces” down) must be in a single interface set (of which
there is only one logical copy shared by many users) while another implementation may
provide a scheme for combining interface sets (e.g., it might provide for federated hierar-
chies of named interface sets).

Regardless of how an implementation relates interface sets to gether:

* Allinterface names within an interface set must be unique
* Any single client’s view of the interfaces within an interface set must be consistent.

7.3 Implementation Dependencies

An implementation of an Interface Repository requires some form of persistent object
store. Normally the type of persistent object store used to implement an Interface Reposi-
tory determines how an interface set is distributed and/or replicated throughout a network
domain. For example, if an Interface Repository is implemented usin g a filing system to
provide object storage, there may be only a single copy of an interface set maintained on a
single machine. Alternatively, if an OODB is used to provide object storage, multiple cop-
ies of an interface set may be maintained each of which is distributed across several
machines to provide both high- availability and load-balancing. The type of object store
used may determine the scope of interface sets provided by an implementation of the
Interface Repository. For example, it may determine whether each user has a local copy of
an interface set or if there is one copy per community of users. The object store may also
determine how consistent are views of an interface set within a community of users --
whether or not all clients of an interface set see exactly the same set at any given point in
time or whether latency in distributing copies of the set gives different users different
views of the set at any point in time.

1. Aninstance of an Interface Repository may contain more than one interface set.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 101

The Interface Repository

An implementation of the Interface Repository is also dependent on the security mecha-
nism in use. The security mechanism (usually operating in conjunction with the object
store) determines the type and granularity of access controls available to constrain which
users may use which interfaces and which parts of which interfaces. For example, the
security mechanism may support only the provision of ACL-based controls which apply
to interfaces in toto (i.e., whether a user may or may not use an interface). Alternatively, a
more sophisticated security mechanism may provide access controls which permit selec-
tive protection of an interface’s individual operations.

7.4 Basics of the Interface Repository Interface

7.4.1 Types of Interface Objects

Each interface managed in an Interface Repository is maintained as a collection of five
types of objects:2

1. Interface_Def represents an interface type definition; contains lists of operations and
attributes

Operation the definition of an operation on the interface; contains a list of parameters
Parameter the definition of an argument to an operation

Attribute the definition of an attribute of the interface.

Exception the definition of an exception for an operation.

LU

7.4.2 Instances of Interface Objects

Each interface in the Repository is uniquely identified by the object reference assigned to
its Interface_Def object. (This reference is the “interface reference”). In addition, each
interface has a unique, implementation dependent identifier assigned that allows the inter-
face definition object to be duplicated in other Interface Repositories without confusion.

The set of interfaces maintained by an Interface Repository is maintained in a (flat) con-
tainer called Interface_Bin, 3

2. The interface specifications listed in §7.5.1 on page 103 also define a set of “abstract” interfaces that are
used to define generic attributes and operations. An implementation of the Interface Repository need
not use these specific abstract interfaces to provide these same generic attributes and operations. In par-
ticular, implementations of ORB’s that provide interfaces derived from the interfaces defined here are
OMG compliant.

3. Note that each interface set is maintained in a flat container (i.e., as a list of interface objects) as opposed
to being structured according to the inheritance graph. An implementation of the Interface Repository
may choose to also maintain an interface set as a graph, but this is not required.

102

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Interface Repository Interface

An instance of an interface set has the following containment structure:

Interface_Bin one per interface set
Interface_Def(n) one per interface in the set
Attribute(n) one per attribute per interface
Operation(n) one per operation per interface
Parameter(n) one per parameter per operation
Exception(n) one per exception per operation

7.4.3 Attributes of Interface Objects

The interface specifications for each type of interface object specifies the attributes main-
tained by that object (see below, section 7.5 on page 103). These attributes correspond
directly to IDL statements. An implementation may choose to maintain additional
attributes to facilitate managing the Repository or to record additional (proprietary) infor-
mation about an interface.

7.4.4 Operations on Interface Objects

The interface specifications for the interface objects given here define a set of basic opera-
tions for clients wishing to access the interface objects. They are not intended to provide
sufficient semantics for the construction of basic interface browsers or command-line
interfaces to the Interface Repository, nor to provide an administrative interface. Imple-
mentations of the Interface Repository must have additional operations for creation of the
component objects within an Interface object, but these need not be part of the public
interface.

Only a minimal set of operations have been specified for interface objects. Additional
operations and attributes that an implementation of the Interface Repository may provide
could support the versioning of interfaces, deletion of interfaces and reverse compilation
of specifications (i.e., the generation of a files containing an object’s IDL specification).

7.5 Interface Repository Interface

7.5.1 Definitions

The inheritance relationships for interfaces comprising the Interface Repository are shown
in the following nested list:

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 103

The Interface Repository

Intf_Root(*)
Attribute
Exception
Parameter
Container(*)

Interface_Bin
Interface_Def
Operation

* This interface is abstract (i.e., not instantiable)

The Containment relationships for the interface objects in the Interface Repository are
shown in the following nested list: .

Interface_Bin(1) /* 1 per ‘interface set’ */
Interface_Def(n) /* independent child objects */
Attribute(n) /* dependent child objects */

Operation(n) /* independent child objects */
Parameter(n) /* dependent child objects */
Exception(n) /* dependent child objects */

Orb_idLh is a standard include file which contains at least the following declarations for
the IDL transformation:

typedef long dtime t;
typedef string <UNBOUNDED> interface_id t;
typedef string <UNBOUNDED> typecode_t;
typedef ... Name_value; /* the “well-known any type” */
typedef sequence <Name_Value, UNBOUNDED> N_V_List;
typedef sequence <objref t,UNBOUNDED> objref_list_t;
typedef struct nm_tag {

string<ORBNAMELEN> name;

string opaque; } name_t;
enum io_mode {IN, OUT, INOUT};

H This definition of the interface repository depends on the “any” type (see the issue about
datatypes in the dynamic invocation interface).

Hk It is unresolved if all of the attributes (eg. Time Created) specified for the three types of
“Container” objects are to be included in the interface.

R It is unresolved as to whether the “survey” interfaces should be included.

104 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Interface Repository Interface

7.5.2 Interface Definition for Type Intf_Root

#include “orb_idl.h”

/*

* The Intf_ Root interface represents the most generic form of

* interface from which all other type repository interfaces are derived.
*/
interface Intf_ Root {

/* attributes */

attribute gtring type name<ORB_NAME LEN>; /* the name of the */
/* interface to which */
/* the object belongs */

readonly attribute objref_t object_id; /* the object reference */
/* for the object */

attribute string Object_Name<ORB_NAME_LEN>;/* Name of this object */
/* operations */

ORBSTATUS Get_Attribute(in N_V_List names,
out N_V_List values);

/* Description:
*

* Attribute values are returned in the same order as
* the attribute names passed in.
*

* Errors:
*

* ORB_ATTR_NAME_INVALID The attribute name is not valid
*/ ’

ORBSTATUS Contained_By(out objref list_t Container List);

/* Description:
*

* Retrieves a list of container objects that this

* object is inside, and returns them in Container_ List
*

* Errors:
*

* No additional errors.
*/

} /* end interface Intf_Root */

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 105

The Interface Repository

7.5.3 |Interface Definition for Type Container

typedef struct obj_record {
objref_t object_id;
N_V_List *column_values;

} survey record_t;

typedef sequence <survey record_t, UNBOUNDED> survey_ list_t;

*

¥ % % % * * ¥

~

This type defines the behavior and attributes of
generic container objects. This interface supports
queries that return a list of contained objects and
attribute values for each of the contained objects.
The caller controls the selection, ordering, and projection
criteria.

interface Container : Intf_Root {

/*

attributes */

attribute string Comments<128>; /* a description field */

readonly attribute dtime_t Time_Created; /* Time object was created */

readonly attribute dtime_t Time_Modified; /* Time object was modi-

fied.*/

/*
/*
/*
/*
/*
/*
/*

It should be noted */

that the object is con- */
sidered to be modified if*/
any of its attributes have*/
changed, or its array */
members or child objects */
have been added or deleted.*/

readonly attribute string Created_ By<ORB_USER_NAME LEN>;

/*

User who created the object */

readonly attribute string Modified By<ORB_USER_NAME_LEN>;

/*
/*
/*
/*
/*
/*
/*

User who last updated the */
object. The object is con- */
sidered to be modified if its */
attributes have been modified */
or if its array members or */
child objects have been added */
or deleted. */

attribute string Select_Format<ORB_SELECT_FORMAT_LEN>;

106 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Interface Repository Interface

/* This is the default rule for selecting which objects are returned.

* A rule consists of attribute names, relational operators, values,

* ANDs * and ORs.
*

* The syntax for a selection rule is:
*
* rule -> item ({AND|OR} item)*
*
* item -> Attr Relop Value
*
* where Attr is an attribute name; Relop is one of =, <>,
* >, <, >=, <=; The case of AND and OR is not important.
* Parentheses are not supported at this
* time. Character strings must be enclosed in single quota-
* tion marks, numeric values need not be. Attribute names
* are not enclosed in single quotation marks. The maximum
* number of select criteria allowed is
* ORB_MAX_SELECT_CRITERIA.
*
* Example:
*
* Created By = ‘George’ AND Time_Modified > 615215627 AND
* Time_Modified = Time_Created (June 30, 1989 at about 9:13 am)
*/

attribute string Sort_Format<ORB_SORT_FORMAT LEN>;

/* Default list of attributes to sort by, along with a single

* character for the sort order; i.e., either A(scend)
* or D(escend).

*

* Example:

*

* Created By A Time_Created D

*

* The maximum number of sort orders allowed is

* ORB_MAX_SORT_ORDERS.

*/

attribute string Attribute_ Format<ORB_ATTR FORMAT LEN>;

/* names of attribute values to return
*

* Example:
*

* Created_By Object_Name

*

* Header strings must be enclosed in single quotation
* marks if there is embedded white space (space, tab,

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

107

The Interface Repository

nylon) . Note that the object reference for each child object
is always returned, and always in the first position.

If that is all the information that is desired,
Attribute_Format can be empty. The maximum number of columns
allowed is ORB_MAX COLUMNS, not counting the object reference,
which is always returned.

Select_Format, Sort_Format and Attribute_Format can be
overridden on an Get_Survey call. See Get_Survey below.

* Ok OF O* ¥ ¥ ¥ ¥ ¥ *

~

/* operations */

ORBSTATUS Get_Children (
in name_t Child_1Interface,
out objref_list_t Children

V)

/* Description:

*

* Get_Children will return object references of a particular
* interface type that are contained within the container.

*/

ORBSTATUS Get_sSurvey(

in long Return_Data;

in name_t Child_ Interface_Name;

in string Select_Format<UNBOUNDED>;

in string Sort_Format<UNBOUNDED>;

in string Attribute_Format<UNBOUNDED>;

out long Entries_Returned;

out long Total Entries;

out long Num Attributes;

out sequence<survey record_t,UNBOUNDED> Survey Buffer;

)i
/* Description:

Get_sSurvey freezes a view of a container/contained
relationsghip in this object. The container is not
locked while the frozen view exists. Additional
objects may be added to the container or objects can
be deleted in the background while the view is in
force. For that reason, some of the object handles

in the survey may not be valid. The caller should be
prepared to handle this gracefully. The frozen view
allows the caller to create a scrolling display
without worrying about the previously retrieved parts

O OE OF OF X X X ¥ ¥ ¥

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Interface Repository Intetface

* Ok O % ¥ B % % ok ok X % F X ¥ F F ¥ X F O X X ¥ * X F ¥ ¥ * ¥ ¥ ¥ & ¥ ¥ ¥ ¥ ¥ * ¥ ¥ ¥ ¥ % ¥ ¥ * ¥ *

of the survey changing.

Return_Data is used to control how much survey data
is to be returned by Get_sSurvey. If set to 0, no

data is returned; in this case, Entries_Returned will
be 0 and Total_Entries will contain the number of
items in the survey. If Return_Data is set to a
positive integer value, that many items will be
returned.

Normally Get_Survey uses attributes of the container
object to determine what objects to retrieve,

how to sort them, and what attributes are

desired. The attributes Select_Format, Sort_Format,

and Attribute_Format are used for this purpose (see the
attributes definitions). These values can temporarily be
over-ridden by supplying them as input to the call.

If the attribute is to be over-ridden, and the

desired format is for it to be empty, then the string
ORB_NULL_FORMAT should be placed in the appropriate
location. It is possible to override any combination

of Select_Format, Sort_Format, and Attribute_Format.

The output parameters Entries_Returned and Total_Entries
contain the number of entries returned in

this Get_sSurvey call, and the total number of

entries in the survey, respectively.

The Survey Handle must be used to read additional data from
the survey. It is used in other survey operations. It

is not an object handle and should not be treated as

such (there is no need to perform a Use operation on

it, for example).

Num_Attributes is the number of columns in the output as
determined by Attribute Format. The value of Num_ Attributes
includes the object reference of the objects, which is re-
turned regardless of the contents of the Attribute_Format.

The Survey Buffer is a sequence of survey records, each of
which contains an object reference and a list of Name_ Value
items corresponding to the attributes to be returned.
Errors:

Major error codes:

ORB_RETURN_DATA_INVALID A negative value was speci-
fied for Return_Data.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

109

The Interface Repositoty

ORB_SELECT_FORMAT_ INVALID The select_format used con-
tains a syntax error or

specifies a nonexistent

attribute.

ORB_SORT_FORMAT INVALID The sort_format used contains
a syntax error or specifies a
nonexistent attribute.

ORB_ATTR_FORMAT INVALID The cols_format used contains
a syntax error or specifies a
nonexistent attribute.

ORB_ATTR_NAME_INVALID Invalid attribute name in
format.

ORB_ATTR_NOT_SURVEYABLE An attribute specified in the
Attribute_Format is not survey-
able.

ORB_TOO_MANY_ ATTRS The number of attributes
named is greater than

ORB_MAX SELECT_ CRITERIA,

ORB_MAX SORT_ORDERS, and

ORB_MAX COLUMNS for

Select_Format, Sort_Format,

and Attribute_Format,

respectively.

ORB_RELOP_INVALID The relational operator is
invalid in Select_Format.

ORB_ATTR_VALUE_INVALID The value provided for the
attribute in the select cri-

teria is invalid for that

type of attribute.

ORB_REL_CON_INVALID The relational connector in
the Select_Format is invalid.

ORB_SORT_FLAG_INVALID The flag in the Sort_Format
was not of a valid value.

See the description of

Sort_Format for the valid

Sort_Flag values.

ORB_DUPLICATE_ATTR The same attribute is
specified more than once in
Attribute_Format.

F % ¥ X % F % ¥ ¥ % F F * F ¥ F F ¥ N * F X ¥ F F * ¥ * ¥ ¥ F * F F F X * ¥ ¥ F* ¥ X X ¥ ¥ * ¥ * ¥ *

110 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Interface Repository Interface

* Additional data may be returned in the attribute name
* field of the error return buffer, for example, the
* name of an invalid attribute.]

*/
} /* end interface Container */

7.5.4 Interface Definition for Type Exception
#include “orb_idl.h”

interface Exception: Intf_ Root {

/* attributes */
attribute typecode_t exception_type; |
} /* end interface definition for type Exception */

7.5.5 Interface Definition for Type Attribute

#include <orb_idl.h>

interface Attribute : Intf Root {
/* attributes */

attribute typecode_t attribute_type;

attribute boolean readonly;

* READONLY or READ/WRITE access for this attribute. ‘
*/

attribute Interface_Def inherited_from;

/*

* The Interface from which the attribute is inherited.

* If the attribute is new at a given Interface level, the value
* is the current Interface.

*/

} /* end interface Attribute */

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 111 - i

The Interface Repository

7.5.6 Interface Definition for Operation

#include <orb_idl.h>

interface Operation : Container {

/*

* Definitions of operations are stored as Operation objects.
* Each operation has a list of Parameters and a list of

* Exceptions as dependent member objects.

*/
/* attributes */

attribute Interface_ Def inherited_from;

/*

* The Interface from which the Operation is inherited.

* Tf the Operation is new at a given Interface level, the value
* ig the current Interface.

*/
attribute typecode_t return_type;

/*
* The return type specified for this Operation in IDL
*/

attribute sequence<string, UNBOUNDED> context_names;
/*

* list of names of the context values declared for
* this operation

*/

/* operations */

ORBSTATUS describe_operation (
in NV_List operation_attributes,
in NV_List parameter_attributes,
in NV_List exception_attributes,
out NV_List attribute_info

*

Description:

describe_operation is used to gather attributes of an
operation, attributes of all its parameters and attributes

* ¥ ¥ F N

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Interface Repository Interface

* of all its exceptions. The client sets the attributes desired

* in the input lists.

* On output the client receives a list in the following form:

* the list of operation_attributes

* a list of parameter object references and for each the requested
* attributes

* a list of exception object references and for each the requested
* attributes

*/

ORBSTATUS prep_arglist (
out ArgList arguments
):

/*

* Description:

*

* prep arglist scans the list of parameters and returns an arglist
* go that a client can assign values to each entry and use the list
* in a CreateRequest call

*/

} /* end interface operation */

7.5.7 Interface Definition for Parameter
#include <orb_idl.h>
interface Parameter : Intf Root
/*
* This type defines the definition of an argument to an operation.
*/ ’
/* attributes */

attribute typecode_t type:;

attribute io_mode inout; /* IN, OUT, or INOUT */

} /* end interface Parameter */

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 113

The Interface Repository

7.5.8 Interface Definition for Interface_Def

#include <orb_idl.h>

/*

* An Interface_Def represents an interface type definition.

* an Interface_Def can contain Operation objects as

* independent child objects and Attribute objects as dependent
* member objects

*/

interface Interface_Def : Container ({

/* attributes */

attribute segquence<name_t, UNBOUNDED> super_types;
attribute interface_id_t interface_id;

attribute boolean instantiable;

/*
* TRUE if a user may create an object of this type.
* FALSE if an abstract (place-holder) type.

*/

/* operations */

/*

* A client can retrieve a list of Operations or Attributes comprising
* the Interface_Def by using the Get_Children operation inherited from

* Container.
*/

} /* end interface Interface_Def */

114

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Typecodes

7.5.9

7.6

Interface Definition for Interface_Bin
#include <orb_idl.h>

/*
* An instance of Interface_bin is a contailner holding

* ingtances of Interface_Def.
*

*/

interface Interface_Bin : Container {

/* operations */

/*

* the only legal value for input to the Get_Children operation
* (inherited from Container) is ‘Interface_Def’

*/ . .

} /* end interface Interface_Bin */

Typecodes

Heoksk

Typecodes are values that represent invocation argument types and attribute types. They
can be obtained from the type repository or from IDL compilers. In particular, clients who
use the dynamic invocation interface may need to use the typecode as a means to decipher
information about objects that were not known to the client at compile time. Complex
datatypes require a typecode representation that allows construction of a representation of
the datatype either as a list or as native structure in the language binding.

Typecodes are themselves values that can be passed as invocation arguments. In order to
allow different ORB implementations to hide extra information in typecodes, the repre-
sentation of typecodes will be opaque (like object references). However, we will assume
that the representation is such that typecode “literals” can be placed in C include files.

Abstractly, typecodes consist of a “kind” field, and a “parameter list” field. Two typecodes
are equal if these two fields are equal. However, because of extra information, certain
interfaces may require the use of repository or the operations below.

The following is'a C binding for typecodes.

The exact definition of typecodes has not yet been resolved. What is required is that all the

types representable in IDL be handled.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 115

The Interface Repository

NOTE There should be an entry in TC_KIND for every base data type defined in IDL and for
every well-known opaque type that is a standard part of the standard ORB.

The basic operations on typecodes are

typedef ... typecode_t;
typedef union {typecode_t type; long num; string name;} TC_param;
typedef long bool;
typedef enum { tk_short, tk_long, tk_ushort, tk_ulong,
tk_bool, tk_char, tk_float, tk_double,
tk_octet, tk _named_value, tk_typecode,
tk_objref, tk_struct, tk_union, tk_enum,
tk_string, tk sequence, tk_array } TC_kind;

bool typecode_equal (typecode_t x, typecode_t y);

TC_kind typecode_kind (typecode_t x);

int typecode_num_params (typecode_t x);

TC_param typecode_param (typecode_t x, int index);

typecode_t parse_typecode (typecode_t tc_in, typecode_t tc_tail));

typecode_t typecode_create (TC_kind kind,
int count; TC_param* params);

The create operation returns NULL for an illegal combination of kind and parameters. The
legal combinations are:

tk_short {}
tk_long {}
tk_ushort {}
tk_ulong {}
tk_bool {}
tk_char {}
tk_float {}
tk_double {}
tk_octet {}

tk_named value {}
tk_typecode {}

tk_objref { interface-name-string }

tk_struct { field-name, typecode, ... (repeat pairs) }

tk_union { switch-type, field-name, typecode , ...
(repeat pairs) }

tk_enum { enum-id-string, ... }

tk_string { maxlen-integer }

tk_sequence { typecode, maxlen-integer }

tk_array { typecopde, length-integer }

116 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Typecodes

Clearly we could make the programmer’s life slightly easier if we provided special con-
structor/deconstructor operations for the individual composite types. Given a complete set

of these, we could dump the general create/ num_params/param operations.

The predefined typecode literals are:

TC_SHORT
TC_LONG
TC_USHORT
TC_ULONG
TC_BOOL
TC_CHAR
TC_FLOAT
TC_DOUBLE
TC_OCTET
TC_NAMED_VALUE
TC_TYPECODE
TC_OBJECT= tk_objref {“root-object-type”}

And a number of others for well-known composite types, as seems appropriate:

If “typedef ... FOO” is a IDL type declaration, the IDL compiler could (if asked) produce

a declaration of TC_FOO for use with the dynamic invocation interface.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

117

The Interface Repository

118

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

8

ORB Interface

8.1

The ORB interface is the interface to those ORB functions that do not depend on which
object adapter is used. These operations are the same for all ORBs and all object imple-
mentations, and can be performed either by clients of the objects or implementations.
Some of these operations appear to be on the ORB, others appear to be on the object refer-
ence. Because the operations in this section are implemented by the ORB itself, they are
not in fact operations on objects, although they may be described that way and the lan-
guage binding will, for consistency, make them appear that way.

Converting Object References to Strings

Because an object reference is opaque and may differ from ORB to ORB, the object refer-
ence itself is not a convenient value for storing references to objects in persistent storage
or communicating references by means other than invocation. Two problems must be
solved: allowing an object reference to be turned into a value that a client can store in
some other medium, and ensuring that the value can subsequently be turned into the
appropriate object reference.

An object reference may be translated into a string by the operation objref_to_string.
The value may be stored or communicated in whatever ways strings may be manipulated.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION -119

ORB Interface

8.2

Subsequently, the string to_objref operation will accept a string produced by
objref_to_string and return the corresponding object reference.

interface ORB {
string objref_to_string (in Objref objref);

Objref string to_objref (in string str);
}i

To guarantee that an ORB will understand the string form of an object reference, that
ORB’s objref_to_string operation should be used to produce the string. Since in gen-
eral a client does not know or care which ORB is used for a particular object reference, the
client can choose whatever ORB is convenient.

Object Reference Operations

8.2.1

8.2.2

There are some operations that can be done on any object. These are not operations in the
normal sense, in that they are implemented directly by the ORB, not passed on to the
object implementation. We will describe these as being operations on the object reference,
although the interfaces actually depend on the language binding. As above, where we used
interface Objref to represent the object reference, we will define an interface for Objref:

interface Objref {
Implementation Def ' get_implementation ();

Interface_Def get_interface ();
boolean equal (in Objref objref):
Objref duplicate ();

void release ();

}i

Determining the Object Implementation and Interface

An operation on theobject reference, get_interface, returns an object in the Interface
Repository, which provides type information that may be useful to a program. See Chapter
7 for a definition of operations on the Interface Repository. An operation on the Objref
called get_implementation will return an object in an implementation repository that
describes the implementation of the object. See Chapter 9 for information about the Imple-
mentation Repository.

Interface_Def get_interface ();
Implementation_ Def get_implementation ():;

Duplicating and Releasing Copies of Object References

Because the object reference is opaque and ORB-dependent, it is not possible for clients or
implementations to allocate storage for them. Therefore, there are operations defined to
copy or release an object reference.

120

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Object Reference Operations

Objref duplicate ():
void release ();

If more than one copy of an object reference is needed, the client may create a duplicate.
Note that the object implementation is not involved in creating the duplicate, and that the
implementation cannot distinguish whether the original or a duplicate was used in a partic-
ular request. The equal operation will return TRUE when applied to an objref and a dupli-
cate.

When an object reference is no longer needed by a program, its storage may be reclaimed
by use of the release operation. Note that the object implementation is not involved, and
that neither the object itself nor any other references to it are affected by the release
operation.

8.2.3 Equality of Two Object References
It is often useful for the client to be able to determine if two object references are identical.
The equal operation returns true if the ORB considers the two object references to be iden-
tical. Two object references that are different as far as the ORB is concerned might refer to
the same object, depending on the object semantics.. The object implementation is not
involved in the equality test.

boolean equal (in Objref objref);

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 121

ORB Interface

122

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

9

The Basic Object Adapter

9.1

An Object Adapter is the primary interface that an implementation uses to access ORB
functions. The Basic Object Adapter (BOA) is an interface intended to be widely available
and to support a wide variety of common object implementations. It includes convenient
interfaces for generating object references, registering implementations that consist of one
or more programs, activation of implementations, and authentication of requests. It also
provides a limited amount of persistent storage for objects that can be used for connecting
to a larger or more general storage facility, for storing access control information, or other
purposes.

Most of the Basic Object Adapter interface can be expressed in IDL, since the interface is
to the operations on the object adapter. Some of the operations to bind the implementation
to the object adapter depend on the language mapping. We will note such dependencies,
but still use IDL as the means to describe the interface.

Role of the Basic Object Adapter

One object adapter, called the Basic Object Adapter, should be available in every ORB
implementation; although the BOA will generally have an ORB-dependent implementa-

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 123

The Basic Object Adapter

tion, object implementations that use it should be able to run on any ORB that supports the
required language mapping, assuming they have been installed appropriately.

Other Object Adapters are likely to be created. Ordinarily, it is not necessary for a client of
an object to be concerned about which Object Adapter is used by the implementation. -

The following functions are provided through the Basic Object Adapter:

» Generation and interpretation of object references,
 Authentication of the principal making the call,
 Activation and deactivation of the implementation,

« Activation and deactivation of individual objects, and
« Method invocation through skeletons.

The Basic Object Adapter supports object implementations that are constructed from one
Or more programsl. The BOA activates and communicates with these programs using
operating system facilities that are not part of the ORB. Therefore the BOA requires some
information that is inherently non-portable. Although not defining this information, the
BOA does define the concept of an Implementation Repository which can hold this infor-
mation, allowing each system to install and start implementations in the way that is appro-
priate for that system.

The mechanism for binding the program to the BOA and ORB is also not specified
because it is inherently system and language-dependent. We assume that the BOA can
connect the methods to the skeleton by some means, whether at the time the implementa-
tion is compiled, installed, or activated, etc. Subsequent to activation, the BOA can make
calls on routines in the implementation and the implementation can make calls on the
BOA.

FIG. 11 on page 125 shows the structure of the Basic Object Adapter, and some of the
interactions between the BOA and an Object Implementation. The Basic Object Adapter
will start a program to provide the Object Implementation, in this example, a per-class
server (1). The Object Implementation notifies the BOA that it has finished initializing and
is prepared to handle requests (2). When the first request for a particular object arrives, the
implementation is notified to activate the object (3). On subsequent requests, the BOA
calls the appropriate method using the per-interface skeleton (4). At various times, the
implementation may access BOA services such as object creation, deactivation, etc. (5).

1. The term “program” is meant to include a wide range of possible constructs, including scripts, loadable
modules, etc., in addition to the traditional notions of an application or server.

124

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Basic Object Adapter Interface

FIG. 11 The Structure and Operation of the Basic Object Adapter
Object Implementation \
5. Access
BOA servicp
2. Register 3. Activate 4. Invoke
1. Activate Implementation Object N.leth od

Implementation

L

7
|

Basic Object Adapter

ORB Core

The BOA exports operations that are accessed by the Object Implementation. The BOA
also calls the Object Implementation under certain circumstances. The interface between a
particular version of the BOA and the ORB it runs on is private, as is the interface between
the BOA and the skeletons. Thus, the BOA can exploit features or overcome limitations of
a specific ORB, and can cooperate with the ORB and skeletons to provide a set of portable
interfaces for the object implementation.

9.2 Basic Object Adapter Interface

The BOA interface is specified in IDL, so that the way it is accessed in any programming
language is specified by the client side language mapping for that language. Some data
structures used by the BOA are specific to a given language mapping, so most IDL com-
pilers will not be able to accept this definition literally.

In practice, the BOA is most likely to be implemented partially as a separate component
and partially as a library in the Object Implementation. The separate component is
required to do activation when the implementation is not present. The library portion is
needed to establish the linkage between the methods and the skeleton. The exact partition-
ing of functionality between these parts is implementation dependent. Generally, there will

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 125

The Basic Object Adapter

appear to be a BOA object in the object implementation. When it is invoked, some opera-
tions are satisfied in the library, some in an external server, and some in the ORB.

The following is the approximate interface definition for the BOA object. More details
will be provided as the operations are discussed.

interface Interface_Def; // from Interface Repository
interface Implementation_Def; // from Implementation Repository
interface Objref; // an object reference

interface Principal; // for the authentication service

typedef sequence <octet, 1024> id t;

interface BOA {
Objref create (in id_t id, in Interface_Def intf,
in Implementation_Def impl):;

void dispose (in Objref obj):
id_t get_id (in Objref obj):
void change_implementation (in Objref obj,

in Implementation_Def impl):;

Principal get_principal (in Objref obj, in Request req);
void raise_exception (in long id, in string userid,
in void *param);

void impl_is_ready (in Implementation impl);

void deactivate_impl (in Implementation impl):; ‘
void obj_is_ready (in Objref obj, in Implementation impl);

void deactivate_obj (in Objref obj):

Y

Requests by an implementation on the BOA are of three kinds:

1. Operations to create or destroy object references, or query or update the information
the BOA maintains for an object reference.

2. Operations associated with a particular request.

3. Operations to maintain a registry of active objects and implementations.

Requests by the BOA to an implementation are made with skeletons or using an imple-
mentation’s runtime language mapping information, and are of three kinds:

1. Activating an implementation.

2. Activating an object.

3. Performing an operation (through a skeleton method).

126

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Basic Object Adapter Interface

9.2.1

Each of the BOA operations is described in detail later in this section; the requests of the
BOA to an implementation are described in the language mapping section.

Registration of Implementations

The Basic Object Adapter expects information describing the implementations to be
stored in an Implementation Repository. The Implementation Repository ordinarily is
updated at program installation time, but may be set up incrementally or otherwise. There
are objects with an IDL interface called Implementation_bef, which capture this infor-
mation. The Implementation Repository may contain additional information for debug-
ging, administration, etc. Note that the Implementation Repository is logically distinct
from the Interface Repository, although they may in fact be implemented together.

The Interface Repository contains information about interfaces. There are objects with an
IDL interface called Interface_bef, which capture this information. The Interface
Repository may contain additional information for debugging, administration, browsing,
etc. The ORB Core may or may not make use of the Interface Repository or the Imple-
mentation Repository, but the ORB and BOA use these objects to associate object refer-
ences with their interfaces and implementations.

9.2.2 Activation and Deactivation of Implementations

There are two kinds of activation that a BOA needs to perform as part of operation invoca-
tion. The first, discussed in this section, is implementation activation, which occurs when
no implementation for an object is currently available to handle the request. The second,
discussed later, is object activation, which occurs when no instance of the object is avail-
able to handle the request.

Implementation activation requires coordination between the BOA and the program(s)
containing the implementation. We use the term server as the separately executable entity
that the BOA can start on a particular system. In a POSIX environment, a server would be
a process. In most systems, a server corresponds to the notion of a program, but it can cor-
respond to whatever the appropriate system facility is in a particular environment.

The BOA initiates activity by the implementation by starting the appropriate server, prob-
ably in an operating system-dependent way. The implementation initializes itself, then
notifies the BOA that it is prepared to handle requests by calling impl_is_ready or
obj_1is_ready?. Between the time that the program is started and it indicates it is ready,
the BOA will hold further requests for that server pending. After that point, the BOA,
through the skeletons, will make calls on the methods of the implementation.

2. The latter is for per-object servers.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 127

The Basic Object Adapter

void impl_is_ready (in Implementation Def impl);
void obj_is_ready (in Objref obj, in Implementation_Def impl)

An activation policy describes the rules that a given implementation follows when there
are multiple objects or implementations active. There are four policies that all BOA imple-
mentations support for implementation activation:

o A shared server policy, where multiple active objects of a given implementation share
the same server.

 An unshared server policy, where only one object of a given implementation at a time
can be active in one server.

« A server-per-method policy, where each invocation of a method is implemented by a
separate server being started, with the server terminating when the method completes.

« Persistent server policy, where the server is activated by something outside the BOA.
The server nonetheless must register with the BOA to receive invocations. A persistent
server is assumed to be shared by multiple active objects.

These kinds of implementation activation are illustrated in FIG. 12 on page 129. Case A is
a shared server, where the BOA starts a process which then registers itself with the BOA.
Case B is the case of a persistent server, which is very similar but just registers itself with
the BOA, without the BOA having had to start a process. An unshared server is illustrated
in case C, where the process started by the BOA can only hold one object; the server-per-
method policy in case D causes each method invocation to be done by starting a process.

128

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Basic Object Adapter Interface

FIG. 12

Implementation Activation Policies

9.2.21

9.2.2.2

Start Process

Basic Register Impl
Object Process
Adapter
Object

Shared Server Activation Policy

In a shared server, multiple objects may be implemented by the same program. This is
likely to be the most common kind of server. The server is activated the first time a request
is performed on any object implemented by that server. When the server has initialized
itself, it notifies the BOA that it is ready by calling imp1l_is_ready. Subsequently, the
BOA will deliver requests or object activations for any objects implemented by that
server. The server remains active and will receive requests until it calls deactivate_-
imp1. The BOA will not activate another server for that implementation if one is active.

Before the first request is delivered for a particular object, the object activate routine of the
server is called. An object remains active as long as its server is active, unless the server
calls deactivate_obj for that object.

Unshared Server Activation Policy

In an unshared server, each object is implemented in a different server. This kind of server
is convenient if a object is intended to encapsulate an application or if the server requires
exclusive access to a resource such as a printer. A new server is activated the first time a
request is performed on the object. When the server has initialized itself, it notifies the
BOA that it is ready by calling obj_is_ready. Subsequently, the BOA will deliver

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 129

The Basic Object Adapter

9.2.23

9.2.24

9.2.3

requests for that object. The server remains active and will receive requests until it calls
deactivate_obj.

A new server is started whenever a request is made for an object that is not yet active, even
if a server for another object with the same implementation is active.

Server-per-Method Activation Policy

Under the server-per-method policy, a new server is always started each time a request is
made. The server runs only for the duration of the particular method. Several servers for
the same object or even the same method of the same object may be active simultaneously.
Because a new server is started for each request, it is not necessary for the implementation
to notify the BOA when an object is ready or deactivated.

The BOA activates an implementation for each request, whether or not another request for
that operation, object, or implementation is active at the same time.

Persistent Server Activation Policy

Persistent servers are those servers which are activated by means outside the BOA. Such
implementations notify the BOA that they are available using the imp1_is_ready opera-
tion. Once the BOA knows about a persistent server, it treats the server as a shared server,
sending it activations for individual objects and method calls. If no implementation is
ready when a request arrives, an error is returned for that request.

Generation and Interpretation of Object References

Object references are generated by the BOA using the ORB when requested by an imple-
mentation. The BOA and the ORB work together to associate some information with a
particular object reference. This information is later provided to the implementation upon
the activation of an object. Note that this is the only information an implementation may
use portably to distinguish different object references. The BOA operation used to create a
new object reference is:

Objref create (in id_t id, in Interface_Def intf,
in Implementation_Def impl):

The id is immutable identification information, chosen by the implementation at object
creation time, and never changed during the lifetime of the object. The intf£ is the Inter-
face Repository object that specifies the complete set of interfaces implemented by the
object. The imp1 is the Implementation Repository object that specifies the implementa-
tion to be used for the object.

A typical implementation will use the id value to distinguish different objects, but it is
free to use it in any way it chooses or to assign the same value to different object refer-
ences. Two object references created with the same parameters are not the same object ref-

130

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Basic Object Adapter Interface

erence (for example, they are not equal) as far as the ORB is concerned, although the
implementation may or may not treat them as references to the same object. Note that the
object reference itself is opaque and may be different for different ORBs, but the id value
is available portably in all ORBs. Only the implementation can normally interpret the ia
value. The operation to get the id is a BOA operation:

id_t get_id (in Objref obj):

It is possible for the implementation associated with an object reference to be changed.
This will cause subsequent requests to be handled according to the information in the new
implementation. The operation to set the implementation is a BOA operation:

void change_implementation (in Objref obj,
in Implementation_Def impl);

NOTE Care must be taken in order to change the implementation after the object has been
created. There are issues of synchronization with activation, security, and whether or not
the new implementation is prepared to handle requests for that object. The
change_implementation operation affects all copies of that particular object
reference.

If an object reference is copied, all copies have the same id, interface, and implemen-
tation.

An implementation is allowed to dispose of an object it has created by asking the BOA to
invalidate the object reference. The implementation is responsible for deallocating all
other information about the object. After a dispose is done, the ORB and BOA act as if
the object had never been created, and attempts to issue requests on any existing object
references for that object will fail.

void dispose (in Objref obj):

Note that all of the operations on object references in this section may be done whether or
not the object is active.

9.2.4 Authentication and Access Control

The BOA does not enforce any specific style of security management. It guarantees that
for every method invocation (or object activation) it will identify the principal on whose
behalf the request is performed. The object implementation can obtain this principal by the
operation:

Principal get_principal (in Objref obj, in Request req);
The obj parameter is the object reference passed to the method. If another object is used

the result is undefined. The req parameter is the language-mapping-specific request iden-
tifier passed to the method.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 131

The Basic Object Adapter

The meaning of the principal depends on the security environment that the implementa-
tion is running in. The decision of whether or not to permit a particular operation is left up
to the implementation. Typically, an implementation will associate access rights with par-
ticular objects and principals, and will examine those access rights to determine if the
principal making the request has the privileges required by the particular method. An
implementation could store the access control information, or a reference to the access
control information for this object, in the id for an object.

9.2.5 Persistent Storage

Objects (or, more precisely, object references) are made persistent by the BOA and the
ORB, in that a client that has an object reference can use it at any time without warning,
even if the implementation has been deactivated or the system has been restarted.
Although the ORB and BOA maintain the persistence of object references, the implemen-
tation must participate in keeping any data outside the ORB and BOA persistent.

Toward this end, the BOA provides a small amount of storage for an object in the id
value. In most cases, this storage is insufficient and inconvenient for the complete state of
the object. Instead, the implementation provides and manages that storage, using the id
value to locate the actual storage. For example, the id value might contain the name of a
file, or a key for a database system that holds the persistent state.

9.3 C Language Mapping for Object Implementations

9.3.1

Different programming languages may provide access to the basic ORB functionality in
different ways. Most of the issues of language mapping apply to all operations on all inter-
faces, and address such questions as the programming language view of the object refer-
ence, conventions for calling stubs and being called by skeletons, means of passing
exception information, etc. There are a few details that apply specifically to the object
adapter, such as how the implementation methods are connected to the skeleton.

Operation-specific details

Chapter 5 defines most of the details of naming of parameter types and parameter passing
conventions. Generally, for those parameters that are operation-specific, the method
implementing the operation appears to receive the same values that would be passed to the
stubs.

9.3.2 Method signatures

With the BOA, implementation methods have signatures that are similar to the stubs. The
primary difference is that there is a trailing parameter that provides request-specific infor-
mation and is used to specify exception returns.

132

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

C Language Mapping for Object Implementations

Hesfok

The syntax for method signatures in an object implementation is provisional.
If the following interface is defined in IDL:

interface exampled {
long op5(in long argé);
};

a method for the op5 routine must have the following function signature:

long exampled_op5 (exampled objref, long argé, request_t *req);

The objref parameter is the object reference that was invoked. The method can identify
which object was intended by using the get_id BOA operation. The req parameter is
used for authentication on the get_principal BOA operation, and is used for indicating
exceptions.

The method terminates successfully by executing a return statement returning the
declared operation value. Prior to returning the result of an invocation, the method code
must assign legal values to all out and inout parameters.

The method terminates with an error by executing the raise_exception BOA operation,
which has the following C language definition:

void raise_exception (request_t req, long exceptid,
char * exceptname, void *param);

The req parameter is the last parameter passed into the method. The exceptid parameter
is either a standard exception number, in which case the exceptname parameter must be
NULL, or except_user_defined, in which case the exceptname parameter is a string
naming the exception. In either case, if the exception is declared to take parameters, the
param parameter must be the address of a struct containing the parameters according to
the C language mapping. If the exception takes no parameters, param must be NULL.

9.3.3 Binding methods to skeletons

It is not specified as part of the language mapping how the skeletons are connected to the
methods. Different means will be used in different environments, for example, the skele-

tons may make references to the methods that are resolved by the linker or there may be a
system-dependent call done at program startup to specify the location of the methods.

9.3.4 BOA and ORB routines

The operations on the BOA defined earlier in this chapter and the operations on the ORB
defined in Chapter 8 are used as if they had the IDL definitions described in the document,
and then mapped in the usual way with the C language mapping.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 133

The Basic Object Adapter

For example, the string_to_objref ORB operation has the following signature:

objref_t ORB_string to_objref (objref_t orb, char *objrefstring,
exception_t *ex);

The get_id BOA operation has the following signature:

objref_t BOA_create (objref_t boa, _IDL_SEQUENCE_octet_1024 *id,
objref_t intf, objref_t impl, exception_t *ex);

The equal object reference operation has the following signature:

long Objref_equal (objref t objrefl, objref_t objref,
exception_t *ex);

Although in each example, we are using an “object” that is special (an ORB, an object
adapter, or an object reference), the method name is generated as interface_operation
in the same way as ordinary objects. Also, the signature containes an exception_t
parameter at the end for error indications.

In the first two cases, the signature calls for an object reference to represent the particular
ORB or object adapter being manipulated. Programs may obtain these objects in a variety
of ways, for example, in a global variable before program startup if there is only one ORB
or BOA that makes sense, or by obtaining them from a name service if more than one is
available. In the third case, the object reference being operated on is specified as the first
parameter.

Following the same procedure, the C language binding for the remainder of the ORB,
BOA, and object reference operations may be determined.

134

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

10

Interoperability

It is an explicit goal of the Common ORB Architecture to allow interoperation between
different object systems and ORBs. The large diversity of ORB implementation tech-
niques means that a single strategy or technology for interoperation would be infeasible.
However, there is substantial experience in the industry in connecting networks with dif-
ferent protocols, and we look to those working examples that are in everyday use for the
model of how to connect ORBS.

In general, there is no single protocol that can meet everyone’s needs, and there is no sin-
gle means to interoperate between two different protocols. There are many environments
in which multiple protocols coexist, and there are ways to bridge between environments
that share no protocols. These same truths will hold for ORBs as well.

The primary requirement to allow convenient interoperation is to have a higher-level
model that spans the differences. In the case of the ORB, there is an obvious higher-level
model—IDL-defined object-oriented invocation. Because IDL is defined in an ORB-inde-
pendent way, and because clients and object implementations can be built in an ORB-
independent way, it is possible for a particular request to pass through multiple ORBS, pre-
serving the invocation semantics transparent to clients and implementations.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 135

Interoperability

10.1 The Organization of Multiple ORBs

FIG. 13 on page 136 shows three possible scenarios in which multiple ORBs coexist
(although we will describe the first scenario as a single ORB).

1.

ORB 1 is implemented on both Machine A and Machine B. Both implementations use
the same object references and communication mechanism, and an object reference
can be freely passed from Machine A to Machine B. We actually consider this case to
be a single ORB implemented on two machines since no transformation is needed to
move object references from one machine to the other.

On Machine A, the same client may have some objects implemented by ORB 1 and
some by ORB 2. It is thus possible to an invoke an object reference in one ORB and
pass as a parameter an object reference from another ORB. In any particular comput-
ing environment, an ORB must be able to distinguish its own object references from
others’, and must be able to pass other ORB’s object references as parameters.
Between Machine B and Machine C, there are no common ORBs. In order to pass
(and subsequently invoke) objects between Machine B and Machine C, it is necessary
to construct a gateway to translate object references and requests in one ORB to object
references and requests in the other.

FIG.

13 Multiple ORBs

77

S\ N

ORB 1 ORB 1

w, Gateway

ORB3

Machine B Machine C

Machine A

FLEETU T OB BTG U TR BT

136

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

The Organization of Multiple ORBs

10.1.1

10.1.2

10.1.3

There are many possible ways to connect two ORBS together, but they tend to fall into
two categories: embedding of object references and protocol translation. Another tech-
nique is to allow object implementations to move objects between ORBs.

Reference Embedding

With reference embedding, an object in one ORB appears to be an object in a second
ORB. An invocation on the object in the second ORB arrives at an implementation whose
job it is to perform an invocation in the first ORB. On Machine A in FIG. 13 on page 136
an object implemented using ORB 1 might be made available in ORB 2 make creating an
implementation in ORB 2 that, when invoked, simply invokes the corresponding object in
ORB 1. A common use for reference embedding is when one ORB is a library ORB or
other optimized implementation that cannot be accessed remotely. By embedding those
objects that must be accessed remotely, most of the benefits of the optimized ORB can be
had without sacrificing generality.

Protocol Translation

When two ORBs differ in their implementation details but have similar functionality, it
will often be possible to translate requests in one ORB to be requests in the other ORB.
For example, two RPC-based ORBs might differ in their object reference representation
and packet formats, but otherwise present the same semantics. If it is possible to map
object references in one ORB into object references in the other domain, and translate
packets from one format to the other, a gateway could be constructed to pass requests back
and forth.

Alternate ORBs

An object implementation implicitly chooses an ORB when it binds to a particular object
adapter. If a machine supports multiple ORBs and the same object adapter interface is
available on more than one ORB, an object implementation may choose to make the same
object available through multiple ORBs. Because the object adapter interface is the same
in each case, few changes would be necessary to the object implementation code to sup-
port multiple ORBs. However, the scope and performance of the different ORBs might be
quite different.

In this case, an object implementation might generate object references in different ORBs.
The interface to the object could define operations that would allow a client to obtain an
equivalent object reference in a different ORB.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 137

Interoperability

138

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

11 Glossary

activation

adapter

attribute

basic object adapter

behavior

class

Preparing an object to execute an operation. For example, copy-
ing the persistent form of methods and stored data into an exe-
cutable address space to allow execution of the methods on the
stored data.

Same as object adapter.

An identifiable association between an object and a value. An
attribute A is made visible to clients as a pair of operations:
get_A and set_A. Readonly attributes only generate a get opera-
tion.

The object adapter described in Chapter 9.

The observable effects of an object performing the requested
operation including its results)binding. Not used. See language
binding, dynamic invocation, static invocation, or method reso-
lution for alternatives.

Not used. See interface and implementation for alternatives.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 139

Glossary

client

context object
CORBA

data type

deactivation

deferred synchronous request
dynamic invocation
externalized object reference

handle

implementation

The code or process that invokes an operation on an object.

A collection of name-value pairs that provides environmental or
user-preference information. See Chapter 6.

Common Object Request Broker Architecture.

A categorization of values operation arguments), typically cov-
ering both behavior and representation. Le., the traditional non-
0OO) programming language notion of type.

The opposite of activation.

A request where the client does not wait for completion of the
request, but does intend to accept results later. Contrast with
synchronous request and one-way request.

Constructing and issuing a request whose signature is possibly
not known until runtime.

An object reference expressed as an ORB-specific string. Suit-
able for storage in files or other external media.

Same as object reference.

A definition that provides the information needed to create an
object and allow the object to participate in providing an appro-
priate set of services. An implementation typically includes a
description of the data structure used to represent the core state
associated with an object, as well as definitions of the methods
that access that data structure. It will also typically include
information about the intended interface of the object.

implementation definition language

implementation inheritance

A notation for describing implementations. The implementation
definition language is currently beyond the scope of the ORB
standard. It may contain vendor-specific and adapter-specific
notations.

The construction of an implementation by incremental modifi-
cation of other implementations. The ORB does not provide
implementation inheritance. Implementation inheritance may
be provided by higher level tools.

140 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

implementation object

implementation repository

inheritance

instance

interface

interface inheritance

interface object

interface repository
interface type

interoperability

language binding or mapping

method

method resolution

An object that serves as an implementation definition. Imple-
mentation objects reside in an implementation repository.

A storage place for object implementation information.

The construction of a definition by incremental modification of
other definitions. See interface and implementation inheritance.

An object is an instance of an interface if it provides the opera-
tions signatures, semantics) specified by that interface. An
object is an instance of an implementation if its behavior is pro-
vided by that implementation.

A listing of the operations and attributes that an object provides.
This includes the signatures of the operations, and the types of
the attributes. An interface definition ideally includes the
semantics as well. Also called an object interface or an object’s
interface.

The construction of an interface by incremental modification of
other interfaces. The IDL language provides interface inherit-
ance.

An object that serves to describe an interface. Interface objects
reside in an interface repository.

A storage place for object interface information.
Same as interface or object interface.

The ability for two or more ORBs to cooperate to deliver
requests to the proper object. Interoperating ORBs appear to a
client to be a single ORB.

The means and conventions by which a programmer writing in
a specific programming language accesses ORB capabilities.

An implementation of an operation. Code that may be executed
to perform a requested service. Methods associated with an
object may be structured into one or more programs.

The selection of the method to perform a requested operation.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 141

Glossary

multiple inheritance

object

object adapter

object creation

object destruction
object implementation
object interface

object reference
objref

one-way request
operation

operation name

ORB

ORB core

The construction of a definition by incremental modification of
more than one other definition.

A combination of state and a set of methods that explicitly
embodies an abstraction characterized by the behavior of rele-
vant requests. An object is an instance of an implementation
and an interface. An object models a real-world entity, and it is
implemented as a computational entity that encapsulates state
and operations internally implemented as data and methods)
and responds to requestor services.

The ORB component which provides object reference, activa-
tion, and state related services to an object implementation.
There may be different adapters provided for different kinds of
implementations.

An event that causes an object to exist that is distinct from any
other object.

An event that causes an object to cease to exist.
Same as implementation.
Same as interface.

A value that unambiguously identifies an object. Object refer-
ences are never reused to identify another object.

An abbreviation for object reference.

A request where the client does not wait for completion of the
request, nor does it intend to accept results. Contrast with
deferred synchronous request and synchronous request.

A service that can be requested. An operation has an associated

signature, which may restrict which actual parameters are valid.

A name used in a request to identify an operation.

Object Request Broker. Provides the means by which clients
make and receive requests and responses.

The ORB component which moves a request from a client to
the appropriate adapter for the target object.

142 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

parameter passing mode

persistent object

referential integrity

repository

request

results

server

server object

signature

single inheritance

skeleton

state

Describes the direction of information flow for a operation
parameter. The parameter passing modes are IN, OUT, and
INOUT.

An object that can survive the process or thread that created it.
A persistent object exists until it is explicitly deleted.

The property ensuring that an object reference that exists in the
state associated with an object reliably identifies a single object.

See interface repository and implementation repository.

A client issues a request to cause a service to be performed. A
request consists of an operation and zero or more actual param-
eters. Also associated with a request are the results that may be
returned to the client.

The information returned to the client, which may include val-
ues as well as status information indicating that exceptional
conditions were raised in attempting to perform the requested
service.

A process implementing one or more operations on one or more
objects.

An object providing response to a request for a service. A given
object may be a client for some requests and a server for other
requests.

Defines the parameters of a given operation including their
number order, data types, and passing mode; the results if any;
and the possible outcomes (normal vs. exceptional) that might
occur _

The construction of a definition by incremental modification of
one definition. Contrast with multiple inheritance.

The object-interface-specific ORB component which assists an
object adapter in passing requests to particular methods.

The time varying properties of an object that affect that object’s
behavior.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 143

Glossary

static invocation Constructing a request at compile time. Calling an operation via
a stub procedure.

stub A local procedure corresponding to a single 'operation that
invokes that operation when called.

synchronous request A request where the client pauses to wait for completion of the
request. Contrast with deferred synchronous request and one-
way request,

transient object An object whose existence is limited by the lifetime of the pro-
cess or thread that created it

type See data type and object interface.

value Any entity that may be a possible actual parameter in a request,

Values that serve to identify objects are called object references,

144 THE COMMON OBJECT REQUEST BROKER:‘ARCHITECTUF{E AND SPECIFICATION

